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Abstract

The Great Recession saw sharp drops in labor earnings and in asset prices. How were
the welfare losses from these declines distributed across different age groups? To answer
this question we construct a stochastic overlapping-generations general equilibrium model
in which households are subject to aggregate shocks that affect both earnings and asset
valuations. A calibrated version of the model predicts that younger cohorts fare better than
older cohorts when the equilibrium decline in the price of risky assets is large relative to the
decline in wages. This finding emerges since the old partially rely on sales of risky assets
to finance consumption, whereas the young accumulate wealth for life cycle reasons, and
now purchase assets at depressed prices. In a calibrated version of our model, aggregate net
worth declines by 26.8% relative to trend, consistent with the experience of the U.S. economy.
Average labor incomes decline 9.8%, but young households face even larger earnings declines.
The model predicts that the Great Recession implied modest average welfare losses for
households in the 20-29 age group, but very large welfare losses of around 10% of lifetime
consumption for households aged 60 and older.
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1 Introduction

The Great Recession was the largest contraction in the United States since the Great Depression.

Aggregate output and household incomes fell nearly ten percent below trend, and the prices of

risky financial as well as real assets –especially stocks and real estate– declined almost three times

as much as incomes. The goal of this paper is to explore the welfare consequences of a rare but

severe and long-lasting recession such as the Great Recession that features a sharp fall in labor

earnings and a collapse in asset prices. Our main objective is to study how the welfare costs of

such a recession vary across different age groups.

We argue that the welfare effects of large aggregate shocks are unevenly distributed across

different economically active generations. We document empirically that young households have

little financial wealth, relative to their labor income, while older households are asset rich but have

little human wealth, measured as the present discounted value of future labor income. In addition,

young households who buy assets at depressed prices may gain from future asset price appreciation,

while older households close to the end of the life cycle may die before prices can recover. A steep

fall in asset prices therefore likely has more serious welfare implications for older households.

To empirically underpin our analysis, in the next section we use data from the Survey of

Consumer Finances (SCF) to document how labor income and net worth vary over the life cycle.

We confirm that older households indeed hold the vast majority of real and financial assets, whereas

the young are financial wealth poor but human wealth rich. The same SCF data are then used to

estimate the net worth losses associated with the decline in asset prices during the Great Recession,

again focusing on how these losses vary with household age. To do so, we decompose net worth into

different asset and liability classes, and impute losses by applying asset-class-specific price deflators

to age-group-specific portfolios. Since we wish to emphasize that the asset price declines have

been rather persistent, we focus on age-specific declines in overall net worth between the middle

of 2007 and an average of the 2009-2013 period, rather than on the even sharper (but fairly

transitory) decline in stock prices between mid 2007 and early 2009. We find that the average

household experienced a decline in net worth of $116,500 during this period. These losses were

heavily concentrated among older age groups: households aged 60-69 lost $197,000 on average.

These empirical observations suggest that the welfare losses from large economic downturns

are unevenly distributed across different age groups in the population. However, a more complete

welfare analysis requires forecasts for the future evolution of labor income and asset prices, and an

understanding of how agents will optimally adjust savings and portfolio choice behavior in response
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to expected future wage and price changes. In the remainder of the paper, we therefore construct a

stochastic general equilibrium model with overlapping generations and large aggregate shocks that

affect both wages and endogenous asset prices. This model is designed with the explicit purpose of

representing well the co-movement of incomes and asset prices in the Great Recession, and we use

a version of the model calibrated to aggregate and micro data in 2007 to assess the distributional

consequences of this specific severe macroeconomic downturn.1 One question of particular interest

that we can ask within the context of this model is whether young people conceivably benefit from

becoming economically active in the midst of a large recession rather than in normal times.

The answers to these distributional questions crucially depend on the size of the decline in

equilibrium risky asset prices, relative to the decline in income, in response to a negative aggregate

shock. In the model, if middle-aged households have a strong incentive to sell their assets in the

downturn (e.g., because they strongly value smooth consumption profiles), then equilibrium asset

prices decline more strongly than income. This in turn benefits younger generations who buy these

assets at low prices, potentially compensating them for the fall in earnings they experience. At the

same time, we will present empirical evidence that younger households experience disproportionately

large earnings losses in recessions, an observation that we will ensure holds true in our quantitative

model as well.2 Thus, the overall allocation of welfare losses from a recession depends crucially on

the quantitative importance of asset price risk, the age differences in the exposure to this risk, and

the age differences in the direct effect of recessions on labor income.

One challenge we face is to account simultaneously for the massive decline in the price of risky

assets and a relatively constant real risk free interest rate during the Great Recession. We interpret

this pattern as reflecting an increase in the equilibrium risk premium, and associate a model

Great Recession with an increase in aggregate risk, in addition to a decline in labor incomes and

dividends.3 In particular, when the model economy enters the Great Recession-like state, a Great

Depression-like event becomes a possibility. This time variation in aggregate risk activates a strong

precautionary demand for risk-free bonds which supports bond prices at the same time that risky

1Note that the model is not designed to shed light on the underlying causes of the Great Recession. In addition,
although we construct and calibrate the model with the Great Recession of the last decade in mind, its implied
strong co-movement between incomes and risky asset prices is broadly consistent with the finding by Barro and
Ursua 2008, Tables C1 and C2, that in large recessions, for the limited observations for the U.S. and for a larger
sample of international large recessions, output and stock prices typically fall together. At the same time, as our
calibration will make clear, the objective of the model is not to rationalize asset price dynamics of all classes of
risky assets during typical moderate business cycles.

2The severe and persistent (over a decade) earnings losses of the young we model are consistent with the
empirical literature that studies the labor market outcomes of young cohorts in deep recessions (see, e.g., Kahn
2010, Oreopoulos, von Wachter, and Heisz 2012, and Schwandt and von Wachter 2017).

3Bloom (2014) documents that macro uncertainty indeed rises strongly in recessions.
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asset prices collapse. For plausible probabilities of a Great Depression the model delivers empirically

realistic dynamics for the prices of both riskless and risky asset prices, making it a suitable laboratory

for quantifying their welfare implications. At the same time it broadly rationalizes the age variation

in portfolio composition observed in the SCF: older model households endogenously hold relatively

safe portfolios coming into the Great Recession precisely because they are relatively asset-rich and

human-wealth poor, and thus especially exposed to asset price fluctuations.

After having argued that our model economy paints an empirically plausible picture of the

Great Recession along its key asset pricing and portfolio dimensions we turn to the normative

evaluation of this event. In terms of welfare, in our benchmark model deep recessions like the

Great Recession are associated with massive welfare losses for older households (in the order of

10% of remaining lifetime consumption), but much smaller losses (approximately 1% of lifetime

consumption) for the young. In an alternative version of the model that abstracts from the fact

that young households are disproportionately negatively affected in their labor earnings in the Great

Recession (losing 14.3% of earnings, relative to a population average of 9.8%), the youngest age

group in fact enjoys higher lifetime utility if it becomes economically active during the recession.

Our paper builds on two broad strands of the literature. First, methodologically, we use a

stochastic overlapping generations (OLG) model with endogenous portfolio choice to study the

implications of aggregate shocks for asset prices and intergenerational redistribution. The liter-

ature that analyzes asset prices and portfolio choice in stochastic life cycle economies includes

Labadie (1986), Huffman (1987), Ŕıos-Rull (1994), Storesletten, Telmer, and Yaron (2004, 2007),

Constantinides, Donaldson, and Mehra (2002), Kubler and Schmedders (2013), and, with a fo-

cus on housing, Piazzesi and Schneider (2012), Corbae and Quintin (2015), as well as Kaplan,

Mitman, and Violante (2017). Ŕıos-Rull (1996) investigates the properties of business cycles in

this class of models, while Ball and Mankiw (2007), Smetters (2006), Krueger and Kubler (2004,

2006), Miyazaki, Saito, and Yamada (2009), Campbell and Nosbusch (2007), and Hasanhodzic and

Kotlikoff (2017) analyze the allocation of aggregate consumption risk across different generations.

Second, in terms of economic substance, we study the distributional impact of a large shock to

aggregate output and asset prices, focusing on the Great Recession as our application. Hur (2013),

Peterman and Sommer (2014) and Menno and Oliviero (2016) also investigate the consequences

of the Great Recession in life-cycle models, but focus, respectively, on the roles of borrowing

constraints, social security, and house prices and mortgage debt for the distribution of welfare

losses. Related, a number of papers study the distributional consequences across age cohorts of

other types of large economy-wide shocks. Our analysis is similar in spirit to the study of Doepke
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and Schneider (2006a,b) who focus on the inflationary episode of the 1970s and, to a lesser

extent, to the study of Meh, Ŕıos-Rull, and Terajima (2010). Other work employs OLG models

to investigate the impact of large swings in the demographic structure of the population on factor

and asset prices, as well as on the welfare of different age cohorts. Examples include Attanasio,

Kitao, and Violante (2007), Krueger and Ludwig (2007), and Ŕıos-Rull (2001).

The remainder of this paper is organized as follows. In Section 2 we present the life-cycle facts

on labor income, net worth, and portfolio allocations that motivate our quantitative analysis and

that we use later to calibrate the model. In Section 3 we set up our model and define a recursive

competitive equilibrium. Section 4 studies a simple three period version of our model in which the

key asset price mechanism can be analyzed in the most transparent way. Section 5 is devoted to

the calibration of the full quantitative model, and Section 6 reports the results from our thought

experiment. In Section 7 we discuss the robustness of our findings to alternative parameterizations

and modelling assumptions. Section 8 concludes. Details of the computational approach, proofs,

and additional theoretical results are relegated to the Appendix.

2 Data

In this section we document the life-cycle profiles for labor income, net worth, and portfolio com-

position that motivate our focus on heterogeneity along the age dimension and that will also serve

as inputs for the calibration of the quantitative model. The need for detailed data on household

portfolios leads us to use the Survey of Consumer Finances (SCF) as our primary data source. The

SCF is the best source of micro data on the assets and debts of US households.4 The survey is

conducted every three years, with the most recent surveys conducted in 2007, 2010, and 2013.

The 2007 survey captures the pre-recession peak in asset prices, and we use it to construct

life-cycle profiles for labor income, total income, assets, debts, and net worth in the pre–Great-

Recession state in Table 1. These profiles are constructed by averaging (using sample weights)

across households partitioned into 10-year age groups. We divide total income into an asset income

component and a residual non-asset-income component labeled labor income.5 We measure net

4One advantage of the survey is that it over samples wealthy households, using a list based on IRS data. Because
the SCF weighting scheme adjusts for higher non-response rates among wealthier households, it delivers higher
estimates for average income and wealth, compared to other household surveys, such as the Current Population
Survey (CPS) or the Panel Study of Income Dynamics (PSID).

5Asset income is defined as interest or dividend income (minus interest payment on debts), income from capital
gains and asset sales, one-third of income from sole proprietorship other business or farm, and an imputation for
rents from owner-occupied housing. We set these imputed rents equal to the value of primary residence times the
rate of return on all other assets. This rate of return is computed as asset income (excluding imputed rents) divided
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worth as the value of all financial and non financial assets, less the value of all liabilities.6

From Table 1 we observe that in 2007 average nominal household income in the SCF was

$83,430, while average household net worth was $555,660, for a net worth to income ratio of

6.66.7 Average household assets amounted to $659,000, with an average rate of return of 3.1%.

Average household debts came to $103,300, with an average interest rate on debts of 6.4%. The

share of net asset income in total income was 16%. Young households had negative net asset

income, despite having positive net worth, reflecting the higher average interest rate paid on debts

relative to the rate earned on assets.

Table 1: Income and Wealth Over the Life Cycle (2007 SCF, $1,000)

Age of Total Labor Asset Assets Debts Net Worth
Head Income Income Income

All 83.43 70.07 13.36 659.00 103.34 555.66

20-29 38.83 39.68 -0.85 130.66 53.30 77.36
30-39 69.83 68.68 1.15 335.87 136.12 199.75
40-49 93.40 84.97 8.43 598.21 132.62 465.59
50-59 117.97 99.56 18.41 959.77 133.24 826.53
60-69 109.06 76.15 32.90 1,156.96 104.10 1,052.86
70+ 57.56 34.46 23.11 756.76 28.48 728.28

Household income follows the familiar hump shape over the life cycle, while net worth peaks

somewhat later. For 20- to 29-year-old, average net worth is 1.9 times average labor income,

while for households aged 70 and older, the corresponding ratio is 21.1. Thus, the old are much

more exposed to fluctuations in asset prices than the young, and therefore endured much larger

losses in net worth when asset prices collapsed in the Great Recession. We will ensure, through an

appropriate calibration, that the life-cycle patterns of labor income and net worth in our structural

by aggregate assets (excluding the value of primary residences and the value of vehicles).
Labor income is all other income: wage and salary income, two-thirds of income from sole proprietorship other

business or farm, unemployment and workers’ compensation, child support or alimony, income from social security
other pensions or annuities, and income from other sources. Since labor income includes social security and defined
benefit pension income, even retired households will have non-trivial labor income, according to our definition.

6Our SCF-based measure of net worth is a comprehensive measure of household wealth. It excludes the present
value of future pensions associated with defined benefit private pension plans and social security. Recall, however,
that the pension income associated with these forms of wealth is part of our labor income measure. Thus, our
calibration will capture how these programs impact discretionary savings.

7Since income questions refer to the previous calendar year, while questions about wealth are contemporaneous,
we adjust income measures for CPI inflation between 2006 and 2007.
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OLG model are identical to the empirical profiles documented here.

While Table 1 suggests large losses for older households from a slump in asset prices, the risk

composition of net worth also varies substantially with age. To accurately estimate the losses in

asset valuations by age group, we therefore further decompose portfolios by age group and examine

the relative price changes across different asset classes. In Table 2 we decompose total net worth

into risky net worth and safe net worth, where we define risky net worth as the value of stocks,

residential real estate, non corporate business, and non-residential property. We define safe net

worth as the value of all other assets, less all debts.8 In aggregate, risky net worth constitutes

93.9% of aggregate net worth. However, among 30- to 39-year-old, the corresponding ratio is

140.4%, while among those aged 70 or older, it is only 79.2%. These three ratios reflect three facts:

(i) in the aggregate, net household holdings of safe assets are very small, (ii) younger households

are short in safe assets, because they tend to have substantial mortgage debt (classified as riskless

liability) and only small holdings of riskless (and risky) financial assets, and (iii) older households

have little debt and lots of assets, including a significant position in riskless financial assets.

Table 2: Portfolio Shares as a Percentage of Net Worth (2007 SCF)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Age of Stocks Res. real Noncorp. Nonres. Risky Bonds Cars Other Debts Safe
Head estate bus. prop. NW + CDs assets NW

All 30.28 46.99 12.87 3.80 93.95 16.98 3.45 4.23 -18.60 6.05

20-29 13.20 77.67 43.31 1.28 135.46 13.66 15.26 4.51 -68.90 -35.46
30-39 26.27 96.47 12.73 4.97 140.44 13.80 9.73 4.19 -68.15 -40.44
40-49 30.41 57.62 12.55 3.81 104.38 15.17 4.44 4.49 -28.48 -4.38
50-59 32.70 42.40 13.53 3.72 92.35 17.02 2.79 3.96 -16.12 7.65
60-69 32.17 35.62 13.41 4.12 85.31 17.45 2.40 4.73 -9.89 14.69
70+ 27.12 39.76 8.98 3.33 79.18 19.26 1.75 3.72 -3.91 20.82

Risky Net Worth (5) is equal to the sum of columns (1)+(2)+(3)+(4). Safe Net Worth (10) is the sum

of columns (6)+(7)+(8)+(9). Total Net Worth is the sum of columns (5)+(10).

The distributions of net worth (Table 1) and its risky versus safe components (Table 2) jointly

determine the direct allocation of capital losses across age groups when asset prices fell sharply

during the Great Recession. To obtain a sense of the magnitude of age-specific capital losses during

this time period we now estimate these losses using aggregate asset-class-specific price series to

8Stocks include stocks held directly or indirectly through mutual funds and retirement accounts, and also include
closely held equity. The category “Bonds + CDs” includes bonds (directly or indirectly held), cash, transaction
accounts, CDs, and the cash value of life insurance.
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revalue age-group-specific portfolios.9

To carry out this revaluation exercise we assume that 2007 SCF portfolios reflect the distribution

of household net worth in the second quarter of 2007. We then revalue portfolios for each age

group, and for each successive quarter, as follows. We price stock wealth using the Wilshire

5000 Index (the version that excludes reinvested dividends). We value residential real estate using

the Case-Shiller National Home Price Index, which is a quarterly repeat-sales-based index. We

price non-residential property using the Moody’s/REAL Commercial Property Price Index, which

is a monthly repeat-sales-based index for the prices of apartments, industrial property, commercial

property, and retail property. We price non-corporate business wealth using Flow of Funds data.10

These asset price series are all nominal. To turn nominal into real price declines, we employ the

GDP deflator published by the BEA.

Table 3 applies these real price changes to the life-cycle profiles for aggregate net worth and

its decomposition outlined in Tables 1 and 2. Here we report average capital losses over the 20

quarter period 2009Q1-2013Q4. We average over a five year period to emphasize the impact of

persistent asset price declines rather than the sharp but relatively transitory decline in stock prices

observed in late 2008 and early 2009.

Table 3: Capital Losses by Age Group

Inflation-adjusted capital losses from 2007:2 to 2009:1-2013:4 ($1,000, 2007)
Age of Stocks Res. real Noncorp. Nonres. Total Total / net Total / Total losses
head estate bus. prop. worth (%) income (%) to 2009Q1

All 30.6 64.4 15.1 6.5 116.5 21.0 139.6 154.5

20-29 1.9 14.8 7.1 0.3 24.0 31.1 61.9 24.5
30-39 9.5 47.5 5.4 3.0 65.4 32.8 93.7 73.0
40-49 25.7 66.1 12.3 5.4 109.6 23.5 117.3 139.8
50-59 49.1 86.4 23.6 9.4 168.5 20.4 142.8 232.3
60-69 61.5 92.4 29.8 13.3 197.0 18.7 180.6 278.9
70+ 35.9 71.4 13.8 7.4 128.5 17.6 223.2 173.9

The first row of Table 3 reports average inflation-adjusted losses on various components of net

9In Section 6.7 we compare the age distribution for net worth across the 2007, 2010, and 2013 waves of the
SCF. However, changes in the cross-sectional age distributions over time reflect both the direct effect of asset
price declines but also the endogenous effects of changes in saving rates in response to those capital losses. Our
revaluation exercise here isolates the first effect.

10In particular, the Flow of Funds reports changes in market values for a variety of asset types by sector. We focus
on the asset type “proprietors’ investment in unincorporated business” for the household and non-profit sector.
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worth. The total loss reported is the sum of the losses on all risky assets. The average household

saw a price-change-induced decline in the value of their risky assets of $116, 500 between 2007:2

and the 2009:1-2013:4 average, which amounted to 21 percent of 2007:2 average net worth or

140 percent of 2007 average annual income. Over half of these capital losses are attributable

to a decline in house prices. The trough for house prices was 2012Q1, by which date inflation-

adjusted house prices had declined 31.1 percent. The trough for stock prices was 2009Q1, when

inflation-adjusted prices were 47.7 percent below their 2007Q2 value.11

The remaining rows of Table 3 show that risky asset capital losses varied widely by age. Younger

households lost much less, while those in the 60-69 age group lost the most: $197, 000 on average,

or almost twice the average annual income for this age group. At the same time, differences

in portfolio composition were large enough to generate substantial age variation in returns. In

particular, because younger households were more leveraged, they lost more as a percentage of

their net worth: 30- to 39-year-old lost 32.8 percent of net worth, while households older than 70

lost only 17.6 percent. In other words, absent age variation in portfolios, the losses experienced

by younger households would have been smaller, and those experienced by older households would

have been even larger.

Table 4: Aggregate Capital Losses

Aggregate Wealth Losses from 2007:2 to 2009:1–2013:4
Risky asset losses ($1,000) Net worth loss GDPpc loss

Nominal Real Real rel. trend rel. trend (%) rel. trend (%)
90.3 116.5 148.8 26.8 9.8

Our goal is to measure the Great Recession declines in incomes and asset prices in a consistent

fashion. We measure the Great Recession income decline as the deviation of real GDP per capita

from trend, where trend GDP per capita grows at a constant 2 percent rate from 2007Q2 (see

Section 5). Table 4 presents aggregate asset price declines measured relative to the same 2 percent

growth trend, in addition to nominal and real price declines. As expected, asset price declines are

smaller measured in nominal terms, and larger when measured relative to a growth trend. Our

calibration will target the 26.8 percent observed decline in the value of net worth relative to a 2

percent trend.12 This target is appropriate if in the absence of a recession one would expect asset

11By the end of 2015, 8.5 years after the onset of the asset price decline in the Great Recession aggregate real
risky asset values had fully recovered, with real stock prices 23.5 percent above and real house prices 15.0 percent
below their 2007Q2 values. This timing accords well with the 10 year decline in asset prices in our model. Time
series for real price changes by asset type relative to 2007:2 are reported in Table A-4 in Appendix G.

12To properly quantify the decline in the total value of net worth requires making an additional assumption about
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prices to grow at roughly the same rate as GDP per capita.13 This 26.8 percent decline compares

to a 9.8 percent decline in GDP per capita, relative to trend, over the same period.14

3 The Model

The facts documented above guide our modelling choices. First, the substantial heterogeneity by

household age in labor income and net worth requires an overlapping-generations life-cycle model.

Our general equilibrium approach provides a theoretical link between the dynamics of income,

consumption, and savings on the one hand, and asset prices on the other. Second, empirical

portfolio allocations between risky and riskless assets display significant age heterogeneity, which

translates into age variation in the sensitivity of net worth to aggregate shocks. This motivates

us to consider models with both risky and safe assets. Third, the direct effect of recessions

on labor income varies across age groups, largely reflecting the fact that younger workers are

disproportionately likely to become unemployed.15 This leads us to a model specification in which

recessions change not only average earnings, but also the distribution of earnings by age.

3.1 Technology

A representative firm operates a Cobb-Douglas technology that takes as inputs a fixed factor K

and labor L, and produces as output a non-storable consumption good Y . The firm’s productivity

varies with an aggregate shock z which drives aggregate fluctuations. Thus,

Y = z K θ L1−θ,

where θ ∈ (0, 1) is capital’s share of output.

Aggregate productivity z has finite support Z and evolves over time according to a Markov

chain with transition matrix Γz,z ′ .

the prices of the safe components of net worth (bonds, vehicles, other assets, and debts). If the aggregate value of
safe assets (less debts) grows in real terms at the economy’s trend growth rate, then the decline in the real value
of risky assets (relative to trend) as a share of net worth is equal to the percentage decline (relative to trend) in
the value of net worth. Thus, this assumption justifies targeting an aggregate asset price decline of 26.8% percent
in our calibration.

13The real price of houses doubled between 1975 and 2006, consistent with a 2 percent trend annual growth
rate (see Davis and Heathcote 2007, Figure 1). Real stock prices rose much faster over the same period, with the
Wilshire 5000 Price Index averaging 5.5 percent annual growth.

14Relative to a 2 percent growth trend, the trough in aggregate asset values was reached in the fourth quarter
of 2011. At the end of 2015 asset values were still 14 percent below trend.

15In Section 7.2 we will document the extent of age variation in labor income declines in the Great Recession.
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We normalize K = 1. One interpretation of our assumption that capital K is in fixed supply

is that K stands in for nonreproducible land or intangible capital. By making the stock of capital

fixed, any changes in the demand for assets must translate into movements in asset prices rather

than changes in the quantity of capital. This property is important given our focus on the welfare

effects of large recessions that are accompanied by large asset price declines. In the standard

frictionless business cycle model, by contrast, capital and consumption are the same good, and

thus that model cannot generate any movements in the relative price of capital.

3.2 Endowments

Households live for I periods and then die with certainty. Thus, the economy is populated by I

distinct age cohorts at any point in time. Each age cohort is composed of identical households.

In each period of their lives, households are endowed with one unit of time supplied to the mar-

ket inelastically. Their age- and aggregate-shock-dependent labor productivity profile is given by

{εi(z)}Ii=1. Indexing the productivity profile to the aggregate shock allows us to capture hetero-

geneity across age groups in the impact of recessions on labor income. We normalize units so that∑I
i=1 εi(z) = 1 for all z ∈ Z . Thus, aggregate labor supply is constant and equal to L = 1. This

normalization also implies that aggregate output is given by Y (z) = z for all z ∈ Z .

Labor markets are competitive, and therefore the economy-wide wage per labor efficiency unit

supplied is equal to the marginal product of labor from the production technology: w(z) = (1−θ)z .

Note that because the aggregate supplies of capital and labor are exogenous, and the labor share

of income is constant, fluctuations in z need not be interpreted simply as neutral shocks to multi-

factor productivity: they could equally well capture fluctuations in capital or labor productivity, or

capital or labor utilization rates. Thus, our model is consistent with a range of alternative theories

regarding the fundamental sources of business cycles.
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3.3 Preferences

Households have standard time-separable preferences over stochastic consumption streams {ci}Ii=1

that can be represented by16

E

[
I∑

i=1

i∏
j=1

βj u(ci)

]
,

where βi is the time discount factor between age i − 1 and i (we normalize β1 = 1). Age

variation in the discount factor stands in for unmodeled changes in family size and composition,

age-specific mortality risk, and any other factors that generate age variation in the marginal utility

of consumption. We will calibrate the profile {βi}Ii=1 so that our economy replicates the life-cycle

profile for net worth documented in SCF data in Section 2.

Expectations E (.) are taken with respect to the underlying stochastic process governing aggre-

gate risk. Finally, the period utility function is of the constant relative risk aversion form

u(c) =
c1−γ − 1

1− γ
,

where γ is the coefficient of relative risk aversion, and 1/γ is the intertemporal elasticity of sub-

stitution (IES). The case γ = 1 corresponds to log-utility.

3.4 Financial Markets

Agents trade financial assets to transfer resources over time. We consider two alternative market

structures that differ in the set of assets that can be traded. In the benchmark market structure,

households can trade both a risk-free bond and leveraged risky equity, and portfolio choice is

endogenous. Denote by λi the share of savings allocated by a household of age i to stocks.17 Our

16By studying a standard OLG model we abstract from bequest motives. The implications of introducing bequests
would depend on how they were modelled. Introducing a warm-glow bequest motive linked to the value of bequests
would imply similar welfare consequences of recessions to those in our model without bequests. Introducing bequests
motivated by perfect inter-generational altruism would connect past, present, and future cohorts in a single infinitely-
lived dynasty, thereby rendering the notion of redistribution across generations meaningless.

17In Appendix J we demonstrate that our model is isomorphic to a model in which households can also invest
in residential real estate, as long as a) housing is not subject to trading frictions (such as adjustment costs or
indivisibilities), b) there exists a competitive rental market, and c) households have Cobb-Douglas preferences over
nondurable consumption and housing services. In that extended model, stock and house prices comove positively,
as they did in the Great Recession. However, the extended model cannot speak to the experience of the 1970’s
when the prices of stocks and houses moved in opposite directions (see Piazzesi and Schneider, 2012).
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calibrated aggregate shock process will have the property that, conditional on the current state,

only two values for next period productivity arise with positive probability; thus the economy with

endogenous portfolio choice is equivalent to an economy in which a full set of Arrow securities is

traded. We define an equilibrium for the Arrow securities economy in Appendix A, and in Appendix

B we describe how to exploit this equivalence in the numerical methods we use to characterize

equilibrium allocations. Note that while agents can structure portfolios to insure against aggregate

risk in the endogenous portfolios economy, they cannot buy insurance ex ante against the date and

state in which they become economically active. Thus, aggregate shocks will redistribute between

existing and newly active households.

The second market structure also features two assets and an endogenous consumption-savings

choice. However, the allocations {λi} of household savings across the two assets are treated as

exogenous parameters and calibrated to replicate the portfolio composition across risky and riskless

assets by age observed in the SCF. Thus, households in this model effectively save in one mutual

fund at each age, where the stock versus bond mix in the fund is age varying. We will use this

version of our model as a tool for calibrating all model parameters, and as a vehicle for assessing

the quantitative importance of age variation in portfolios for our asset pricing and welfare results.

We will define competitive equilibrium recursively. The two alternative market structures differ

only with respect to whether the division of household savings between stocks and bonds is specified

exogenously or chosen optimally. We will therefore define a recursive competitive equilibrium only

once, focusing on the economy with endogenous portfolios.

The aggregate state of the economy is described by the current aggregate shock z and the

cross-sectional distribution A = (A1, ... , AI ) of shares of beginning of period total wealth, where∑I
i=1 Ai = 1. Newborn households enter the economy with zero initial wealth, so A1 = 0.

Individual state variables are a household’s age i and its individual share of wealth, denoted by a.

The representative firm issues a constant quantity B of risk-free real bonds at a price q(z , A)

per unit. Each bond is a promise to pay one unit of the consumption good in the next period.

We treat the supply of debt B as an exogenous time- and state-invariant parameter of the model.

Dividends for the representative firm d(z , A) are then given by aggregate capital income θz plus

revenue from debt issuance q(z , A)B less debt repayment B :

d(z , A) = θ z − [1− q(z , A)] B . (1)
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Note that returns to equity are risky, while the return to debt is safe and given by the reciprocal

of the bond price. The supply of debt B determines the level of leverage in the economy: the

higher is B , the more leveraged and risky are stocks. Let p(z , A) denote the ex-dividend price of

equity. The aggregate value of start of period wealth is the value of aggregate payments to asset

holders in the period, plus the ex-dividend value of equity:

W (z , A) = p(z , A) + d(z , A) + B = p(z , A) + θ z + q(z , A) B ,

where the second equality follows from the expression for dividends in equation (1).

3.5 Household Problem

Let yi(z , A, a) and λi(z , A, a) denote the optimal household policy functions for total savings and

for the fraction of savings invested in leveraged equity. Let ci(z , A, a) and a′i(z , A, a, z ′) denote the

associated policy functions for consumption and for shares of next period wealth. The dynamic

programming problem of the household reads as

vi(z , A, a) = max
c,y ,λ,a′

{
u (c) + βi+1

∑
z ′∈Z

Γz,z ′ vi+1 (z ′, A′(z ′), a′(z ′))

}
s.t. (2)

c + y = εi(z) w(z) + W (z , A) a (3)

a′ =

(
λ [p(z ′,A′)+d(z ′,A′)]

p(z,A)
+ (1− λ) 1

q(z,A)

)
y

W (z ′, A′)
(4)

A′ = G (z , A, z ′). (5)

The first constraint (3) is the household’s budget constraint: consumption plus savings must equal

labor earnings plus the household’s share of start of period wealth.18 The second constraint (4)

is the law of motion for the household’s share of individual wealth. This constraint merits some

additional explanation. Savings in equity are given by λy , and the gross return on these savings

is given by [p(z ′, A′) + d(z ′, A′)] /p(z , A). Savings in bonds are given by (1 − λ)y , and the gross

return on these savings is 1/q(z , A). Thus, the numerator on the right-hand side of equation (4)

is the gross value of the household portfolio at the beginning of next period. The household’s

share of next period wealth is this value divided by aggregate next period wealth, the denominator.

18In addition, consumption must be non-negative, and savings at age I must be non-negative.
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The third constraint is the law of motion for the wealth distribution, which allows agents to

forecast future prices, contingent on the sequence for future productivity. Let Gi(z , A, z ′) denote

the forecast for the share of next period wealth owned by age group i .

Definition 1. A recursive competitive equilibrium is a value function and policy functions for each

age, vi(z , A, a), ci(z , A, a), yi(z , A, a), a′i(z , A, a, z ′), λi(z , A, a), pricing functions w(z), d(z , A),

p(z , A), q(z , A), and an aggregate law of motion G (z , A, z ′) such that:

1. Given the pricing functions and the aggregate law of motion, the value functions {vi} solve

the recursive problem of the households, and {ci , yi , a′i ,λi} are the associated policy functions.

2. Wages and dividends satisfy

w(z) = (1− θ) z and d(z , A) = θ z − [1− q(z , A)] B .

3. Markets clear

I∑
i=1

ci(z , A, Ai) = z

I∑
i=1

λi(z , A, Ai) yi(z , A, Ai) = p(z , A)

I∑
i=1

[1− λi(z , A, Ai)] yi(z , A, Ai) = B q(z , A).

4. The law of motion for the distribution of wealth is consistent with equilibrium decision rules

G1(z , A, z ′) = 0 ∀z ′ (6)

Gi+1(z , A, z ′) = a′i(z , A, Ai , z ′), ∀z ′, i = 1, ... , I − 1. (7)

4 Developing Intuition: A Three Period Model

In order to develop intuition for the key mechanisms at work in our model, we now consider the

special case of a three period economy (I = 3) designed to highlight (i) the key determinants

of equilibrium asset price movements, relative to movements in output, and (ii) how asset price

14



movements translate into differential welfare effects across generations.19 We simplify the environ-

ment further by assuming that stocks are the only asset traded (B = 0 and λi ≡ 0), and that the

aggregate shock takes only two values: Z = {zn, zr}, where zn denotes normal times, and zr stands

for a Great Recession-like state. Households do not value consumption when young and discount

the future at a constant factor β2 = β3 = β thereafter. In addition, households are productive only

in the first period of their lives (ε1 = 1 and ε2 = ε3 = 0). Given this set of assumptions, young

households buy as many stocks as they can afford, while the old sell all stocks they own. Only the

middle-aged make an non-trivial intertemporal decision, namely how many shares to retain for old

age. In a recession, lower stock prices have countervailing effects on the middle-aged’s decision to

trade shares. On the one hand, temporarily low current stock prices offer an incentive to reduce

stock sales to exploit higher expected stock returns (the substitution effect). On the other hand,

consumption smoothing calls for selling a larger fraction of stocks, since asset sales are the only

source of income for this group (the income effect).

We measure the size of the decline in asset prices, relative to the decline in output z , by

ξ(A) =
log(p(zr , A)/p(zn, A))

log(zr/zn)
,

where prices and thus the elasticity ξ, are functions of the distribution of wealth A. An elasticity of

ξ = 2, for example, indicates that the percentage decline in asset prices when the economy enters

the recession is two times as large as the fall in output.

A 3 period OLG model is the simplest example in which the distribution of wealth A across

different generations is a state variable.20 Since young households start their lives with zero

asset holdings and the total number of wealth shares has to sum to one, this distribution can be

summarized by the share of wealth held by old households, A3, which for simplicity we denote by

A3 = A. The share of assets owned by middle-aged households is given by A2 = 1− A.

Consumption of a middle-aged household is given by the wealth they enter the period with net

19In Section 7.1 we will also use this model to compare our baseline level stationary process for aggregate
productivity to an alternative specification featuring shocks to the growth rate.

20An even simpler example is a two-period OLG model. However, all beginning-of-period wealth is then held
by the old, and thus this example cannot demonstrate the importance of the wealth distribution for asset prices.
Furthermore, in a two-period model only the young make a consumption-savings decision and the young’s Euler
equation therefore prices assets. Thus asset prices can fall in a recession only if the young’s consumption falls in a
recession. Because recessionary stock prices declines reflect the fact that the young are taking a hit, the question
of whether lower asset prices present the young with an opportunity for welfare gains has an immediate negative
answer. In the three period model, in contrast, the middle-aged price assets, and the welfare implications for the
young can be positive, as we demonstrate below.
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of asset purchases. where A′ = G (z , A) is the number of shares purchased. In old age households

simply consume the proceeds of their assets. Thus

c2(z , A) = (1− A) (p(z , A) + θz)− G (z , A)p(z , A),

c3(z , A; z ′, A′) = G (z , A) [p(z ′, A′) + θz ′] .

The optimality condition with respect to asset purchases is the standard Euler equation

u′ [c2(z , A)] = β
∑
z ′

Γz,z ′
[p(z ′, A′) + θz ′]

p(z , A)
u′ [c3(z , A; z ′, A′)] . (8)

The demand for shares by the young, 1− G (z , A), must equal the number of shares that can

be purchased with their total labor income w(z)/p(z) = (1− θ)z/p(z). Thus,

[1− G (z , A)] p(z , A) = (1− θ)z . (9)

Equations (8)-(9) jointly determine the equilibrium pricing and policy functions p(z , A), G (z , A).21

For logarithmic utility we can solve for the recursive competitive equilibrium in closed form, as

Appendix D shows.22 In equilibrium, asset prices are proportional to output z (ξ = 1), the wealth

distribution A does not respond to the aggregate shock, and consumption of all generations moves

one for one with the shock. If in addition the aggregate shock is iid , then the young (who do not

value consumption in this version of the model) are exactly indifferent between being born in a

recession versus being born in normal times.23 Key for this result is that with log utility the young

are compensated for their income losses by precisely the same decline in asset values, leaving their

future “purchasing power” unchanged. In the data, however, asset prices fell much more than

incomes. This points to an inter-temporal elasticity of substitution below one. When households

are less willing to substitute consumption over time, they are more tempted to sell assets in the

recession state, and a larger price decline is required for them not to do so. In Appendix C we

confirm this intuition in the representative agent (RA) version of the model, by showing that with

iid output levels the asset price elasticity is exactly ξRA = γ.

21Consumption and welfare at all ages is determined by these equilibrium functions, see Appendix F.1.
22This result is not specific to the three period example. The appendix provides a full analytical solution of the

log-utility case for arbitrarily many generations and for any Markov process for z ,
23If output is positively serially correlated then the young suffer (mild) welfare losses because a recession today

makes welfare losses as middle-aged more likely. The reverse logic applies if z is negatively correlated.
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For risk aversion γ 6= 1 the recursive competitive equilibrium has to be solved numerically. We

choose parameter values for (β, θ) and the stochastic process for z consistent with the calibration of

the full model in the next section, and display results for various values of 1/γ, the key determinant

of asset price volatility.24 The left panel of Figure 1 plots the elasticity of asset prices to output,

ξ against A, for γ ∈ {0.4, 1, 4.24, 8}.

Figure 1: Asset Price Decline Relative to Output, Welfare
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This figure highlights two key findings. First, the lower is the IES, 1/γ, the larger is the fall

in asset prices, relative to output, in the recession. With γ = 1, asset prices move exactly one

for one with output, independent of the wealth distribution, a property we establish analytically in

Appendix D. Suppose that γ > 1, implying a lower IES. If asset prices were to fall only as much

as output in the recession, relative to the log-case the middle aged would want to sell more stocks

in the recession because they now care more about a smooth consumption profile. But since the

middle aged can only sell shares to young, price-inelastic buyers, the price must fall more than

in the log-case. Second, the size of asset price movements depends on the wealth distribution

A when preferences are not logarithmic. When households are relatively unwilling to tolerate

consumption fluctuations over time (i.e. 1/γ < 1) a larger share of wealth in the hands of the

middle-aged (a smaller A) translates into greater middle-aged exposure to asset price movements,

larger middle-aged asset sales, and thus a larger asset price elasticity ξ.

24Specifically, we choose θ = 0.3017, and a twenty-year time discount factor β =
[
ΠJ

i=1βi
]2/5

(where the βi
are the calibrated age-dependent ten-year time discount factors for the full model). The output loss between
normal times and recessions pins down zr/zn and is calibrated to 9.84%. Since theoretical asset pricing results for
the representative agent model and the two-period OLG model alluded to above can only be established with iid
shocks, we focus here on this case, and also assume that the two states zn and zr are equally likely.
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Note that for γ = 4.24, the calibrated value below, the elasticity of asset prices to output is

ξ = 1.3 for a wealth distribution (A = 0.42) emerging after a long spell of high output. Thus,

the asset price elasticity in the three-generation OLG model is lower than in the RA model. Our

six-generation quantitative model will generate an intermediate value of ξ = 2.72.25

The welfare consequences for young generations of starting their lives in a recession, relative to

an expansion, are displayed in the right panel of Figure 1. Welfare is measured as the percentage

increase in consumption in all periods of a household’s life that a household born in normal times

would require to be indifferent to being born in a recession. Positive numbers therefore reflect

welfare gains from a recession. We observe that the welfare consequences of recessions for the

young mirror the elasticity of asset prices to output (left panel), confirming that this elasticity

(which in turn is determined by the IES) is the crucial determinant of how welfare losses are

distributed across generations. For example, when γ = 4.24 and A = 0.42, the young experience

welfare gains from the recession worth 2.69% of lifetime consumption.

The purpose of the simple model was to demonstrate the crucial role of the desire of middle-aged

asset owners to smooth consumption through the recession, as measured by the IES. It showed that,

because of favorable asset price movements, the youngest generation might experience welfare gains

from a recession. However, this example stacks the deck in favor of obtaining favorable welfare

consequences for the young. First, the young do not value consumption and thus are not directly

affected by a decline in current aggregate consumption. Second, the labor income decline of the

young is no larger than the decline in aggregate income. Third, the middle-aged have no labor

income and hold no safe assets, forcing them to bear a disproportionate share of the burden of the

recession. To relax these assumptions we now use a realistically calibrated version of the model

to deliver estimates of the distribution of welfare consequences from the Great Recession. In this

version of model the life-cycle profiles for labor income and wealth are calibrated to match those

observed in the 2007 SCF, and the model Great Recession features realistic age-dependent declines

in labor income. Households value consumption in all periods of their lives, and all generations

make consumption-savings as well as portfolio decisions.

5 Calibration

We think of a model period as being 10 years. Agents are assumed to enter the economy as adults

and live for I = 6 periods. The set of parameters characterizing households are risk aversion γ,

25In Appendix E we show in a two period OLG model, as long as the IES 1/γ is smaller than one, 1 < ξ2OLG <
ξRA = γ.
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the life-cycle profile for discount factors {βi}Ii=2, and the parameters governing labor endowments

over the life-cycle profile {εi(z)}Ii=1. The parameters defining capital’s share of income and the

partition of this income between bond and stockholders are θ and B . The technology parameters

are the support Z and transition probability matrix Γ for the aggregate productivity shock z .

Our broad calibration strategy is to calibrate the aggregate endowment process (Z , Γ) directly

from aggregate time series data and to select (θ, B) such that the model reproduces the empirically

observed average portfolio share of risky assets and the aggregate wealth to income ratio in the

2007 SCF. We choose the life cycle profiles {βi , εi(z)} so that the model-implied life cycle profiles

for labor earnings and net worth align with their empirical 2007 counterparts. Finally we set γ so

that the decline in asset prices (relative to the fall in per capita income) in a model Great Recession

matches that observed in the data. All parameter values are reported in Table 5 below. We now

turn to the details of how these values are chosen.

Table 5: Parameters

Preferences and Technology
θ = 0.3017 B = 0.0699 γ = 4.24

Aggregate Risk

Z =

 1.0000
0.9016
0.7109

 Γz,z ′ =

 0.835 0.165 0.000
0.793 0.000 0.207
1.000 0.000 0.000


Age Varying Parameters

Age i βi εi (%) λi (%) ∆εi (%)
20-29 1.00 75 136 -14.3
30-39 1.19 99 140 -12.6
40-49 1.10 123 104 -10.3
50-59 1.18 144 92 -11.1
60-69 1.09 110 85 -6.0
70+ 0.91 50 79 -1.4

5.1 Financial Market Parameters

We use a non stochastic version of the economy, in which the productivity shock is fixed at z = 1,

to calibrate θ and B . Let λ̄ denote the aggregate share of risky assets (stocks) in total household

net worth. Let W̄ denote the aggregate wealth to labor income ratio. Thus,

λ̄ =
p̄

p̄ + q̄B
and W̄ =

p̄ + q̄B

(1− θ)
(10)
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where p̄ and q̄ are steady state stock and bond prices.

Let R̄ = 1/q̄ denote the steady state gross interest rate. In a non stochastic version of the

model, the same interest rate R̄ must apply to both stocks and bonds for agents to be indifferent

about an interior portfolio split. Thus,

R̄ =
1

q̄
=

p̄ + θ + q̄B − B

p̄
. (11)

Given three empirical measures for λ̄ (where risky assets include real estate, as in the empirical

section), W̄ , and R̄ , equations 10 and 11 can be used to solve for p̄, B , and θ. From the 2007

SCF we measure λ̄ and W̄ by averaging across age groups.26

λ̄ = 500.78/545.50 = 0.918

W̄ = 545.50/(10× 69.25) = 0.788

For the interest rate R̄ we target an average weighted return across asset classes. Piazzesi, Schnei-

der, and Tuzel (2007) report real returns on safe and risky assets of 0.75% and 4.75% per annum,

where the latter is the return on an equally weighted portfolio of stocks returning 6.94% and

housing returning 2.52%. Given that our period length is 10 years, this implies

R̄ = λ̄× 1.047510 + (1− λ̄)× 1.007510 = 1.5485.

Collectively, these values for λ̄, W̄ , and R̄ imply that θ = 0.3017 and B = 0.0699.

5.2 Aggregate Shocks

The aggregate shock z takes one of three values: z ∈ Z = {zn, zr , zd} The first state, zn,

corresponds to normal times. The second state, zr < 1, is a Great-Recession-like state. The third

state, zd < zr is a Great-Depression-like state. We wish to stress that since we think of shallow and

short recessions as occurring within “normal times,” our model is not designed to explain standard

business cycle frequency asset price movements.

We normalize zn = 1. We then set zr so that transitioning from the normal to the recession

26In our model, each age group is assumed to be of equal size. Thus, given that we will later seek to replicate
earnings and net worth for each age group, the appropriate aggregate targets are unweighted averages across age
groups. Because these age groups are not of exactly identical size in the SCF, these aggregate targets do not
correspond exactly to SCF population averages, but the differences are small.
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state involves an output decline of 9.84%. This is the size of the decline in real GDP per capita

observed in the US during the Great Recession, defined as the deviation of actual GDP per capita

from trend, where we average the deviation over the 20 quarter period 2009Q1-2013Q4, and where

trend GDP per capita grows at a constant 2% rate from 2007Q2.27 Recall that we have measured

asset price declines in the same way: in real terms, relative to a 2% trend, and averaging losses

(relative to 2007Q2) over the same 20 quarter window. We average output and asset price declines

over 20 quarters to filter out transitory quarter-to-quarter fluctuations: recall that a period in our

model is 10 years. We set zd so that output in the disaster state is 28.9% below normal, the

average deviation of GDP per capita from trend over the 5 year period 1932-1936.28

Since large recessions are rare events, there is limited empirical evidence to identify transition

probabilities. To reduce the number of free parameters, we impose four restrictions on the transition

probability matrix Γ. We assume that (i) the recession state can only be reached from the normal

state (Γr ,r = Γd ,r = 0), (ii) the disaster state can only be reached from the recession state (Γn,d =

Γd ,d = 0). There are two remaining independent transition parameters, the probability of entering a

Great Recession, Γn,r , and the probability that a Great Recession turns into a Great Depression Γr ,d .

We set these transitions to target estimates of the fraction of time the US economy is in Great-

Recession-like and Great-Depression-like states. We estimate these unconditional probabilities

using the long-run data from Maddison on GDP per capita over the period 1800 to 2010 (see The

Maddison Project 2013). Let ∆t denote the deviation of GDP per capita from trend in year t.

We set two thresholds κr < 0 and κd < κr , and define the US economy as being in the recession

state in year t if ∆t ∈ [κd ,κr ] and as being in the disaster state if ∆t < κd . Deviations are

relative to a Hodrick-Prescott trend, with smoothing parameter ω = 6.25 as advocated by Ravn

and Uhlig (2002) for annual data. We set κr = −2% and κd = −7%. These threshold choices are

guided by the goals of making the recession states relatively rare, so that the economy is mostly

in normal times, while ensuring that the Great Recession counts as a recession, and the Great

Depression counts as a disaster.29 Given these thresholds, the US economy has historically been

27The average annual growth rate of US GDP per capita from 1969Q1 to 2007Q2 is 1.98 percent (NIPA, Table
7.1). We assume that both GDP per capita and asset prices are on trend in 2007Q2, which we take to be the
date of the 2007 SCF survey. Recall that this survey is our baseline for measuring the Great Recession decline in
household net worth.

28Here we set the constant trend growth rate equal to the average annual growth rate of US GDP per capita
from 1929 to 1969, which is 2.50 percent. We assume the economy is on trend in 1929.

29The maximum deviation relative to trend during the Great Recession is −2.7% in 2009 and the maximum
deviation during the Great Depression is −8.6% in 1933. These declines are much smaller than the declines relative
to a constant growth trend reported above because the HP filter removes a lot of variance from the data. For this
reason we do not use HP-filtered data to calibrate the size of aggregate shocks – doing so would greatly understate
the welfare consequences of the Great Recession. At the same time, however, we have not used a linear filter over
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in the recession state 13.74% of the time (29 years out of 211), and in the disaster state 2.84%

of the time (6 years out of 211). These two unconditional probabilities translate to the transition

probabilities reported in Table 5: Γn,r = 0.165 and Γr ,d = 0.207.

This output process has the property that model Great Recessions are large, rare events. Given

a 10 year period length, the expected duration of a period of normal productivity is 10/0.165 =

60.6 years. Second, risk is highest in the recession state, when the economy either recovers or

deteriorates further. In particular, there are two types of model recessions. The first, accounting

for 79.3% of all recessions, lasts for 10 years and does not involve a disaster. The second type,

accounting for the remaining 20.7%, lasts for 20 years in total, with 10 years of recession followed

by 10 years in the disaster state. Third, our stationary process for output necessarily implies

negative serial autocorrelation for 10 year output growth rates. The implied serial correlation is

−0.41, and the standard deviation of output growth (annualized and in percent units) is 0.88. The

corresponding statistics from the Maddison data for the 1800 to 2010 period are −0.47 and 1.46.

Thus, the negative serial in growth rates that is a feature of our output process is also apparent in

historical US data. The fact that our process generates less growth rate volatility than observed

empirically reflects the fact that the data feature frequent small fluctuations in addition to the

large, rare recessions that are the only source of volatility, and the key focus, of the paper.

The stochastic output process we deduce from the data and which is the key driver of our

asset pricing and welfare results shares important qualitative features with the processes estimated

in the recent empirical and asset pricing literature on consumption disaster risk. Most closely

related to ours is probably the paper by Nakamura, Steinsson, Barro, and Ursá (2013). These

authors estimate a rich statistical model for consumption disasters. In their model, a persistent

Markov process determines whether or not the economy is in a disaster state. As long as the

economy remains in the disaster state, consumption tends to decline, but when the disaster ends

consumption gradually recovers towards a latent potential value. They estimate that potential

consumption typically declines during a disaster, but does so more slowly than actual consumption.

Thus, a significant portion of consumption losses during recessions is subsequently reversed. Even

though our aggregate shock process is less rich than the one Nakamura et al. (2013) estimate, a

transition to the recession state in our model is qualitatively similar to the onset of a disaster in

their model. In particular, in both models this is a time when uncertainty about the aggregate state

is high. In our model this is the case because there now is a chance that the economy transits to

the disaster state (or of course fully recovers) in the next period. Another important similarity is

the entire 211 year Maddison sample to define the cyclical position of the economy because doing so would conflate
low frequency changes in trend growth with cyclical fluctuations.
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that in both models, negative shocks are not fully permanent, in contrast to models which specify

a difference-stationary processes for output.30 We return to discuss the implications of modelling

output as a level- versus a difference-stationary process in Section 7.1.

5.3 Intertemporal Elasticity of Substitution

The simpler version of the model explored in Section 4 indicated that the curvature parameter γ

strongly influences the size of equilibrium asset price fluctuations. Given our isoelastic utility speci-

fication, γ plays two roles. First, 1/γ is the inter-temporal elasticity of substitution. In a recession,

given positive expected income and consumption growth, the desire to smooth consumption inter-

temporally tends to drive asset prices down, and the price decline will be larger the larger is γ.

Second, γ determines households’ aversion to risk. When the economy enters the recession state,

risk increases, and this will drive up the equilibrium equity premium. Thus, when the economy

enters the recession state, we should expect the price of safe bonds to fall by less than the price

of risky stocks. We set the baseline value for γ so that a model recession replicates the decline

in aggregate household net worth observed during the Great Recession. The decline in mean real

household net worth relative to trend from 2007Q2, measured as the average deviation from trend

over the period 2009Q1 to 2013Q4, was 26.8%. Thus, the decline in asset prices associated with

the recession was 26.77/9.84 = 2.7 times as large as the decline in output over the same period.

The model replicates this asset price decline exactly at γ = 4.24.31

5.4 Life-Cycle Profiles

We set the life-cycle labor endowment profile {(1− θ)εi(zn)}Ii=1 equal to the empirical 2007 SCF

life-cycle profile for labor income, as described in Section 2. The life-cycle profile {βi}Ii=2 are

chosen so that the nonstochastic version of the model generates the 2007 SCF life-cycle profile for

net worth, given the other determinants of life-cycle saving: the elasticity parameter γ, the profile

for earnings, and the interest rate R̄ . In particular, note that household budget constraints in the

30However, a typical Nakamura et al. (2013) disaster does have a small permanent component, while recessions
in our model are long lasting, but do not change trend output in the very long run.

31Estimates for the intertemporal elasticity of substitution 1/γ vary significantly, from values close to zero when
estimated from macro data (see, e.g., Hall 1988) to values that can be above one when estimated from micro data
on specific samples of households that are stockholders (see, e.g., Vissing-Jorgensen and Attanasio 2003). A value
of 1/γ = 1/4.24 is consistent with most estimates from macro data, and micro data with samples representative
of the US population.
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deterministic version of the model can be written as

ci = (1− θ)εi + R̄yi−1 − yi for i = 1, ... , I − 1

cI = (1− θ)εI + R̄yI−1,

where yi is total savings for age group i (net worth for age group i + 1). The youngest age

group corresponds to households aged 20-29, and the sixth and oldest age group corresponds to

households aged 70 and above. We measure {(1− θ)εi}Ii=2 as 10 times average annual labor

income of age group i , and {yi}I−1
i=1 as the average net worth of age group i + 1. Because agents

in our model enter the economy with zero initial wealth, we recategorize asset income for the

youngest group in the SCF as labor income: thus, we set R̄y0 = 0 and set (1 − θ)ε1 equal to 10

times average annual labor income for the youngest group plus R̄ times the data value for y0. We

also set yI = 0, since the oldest group does not save in our model.

Given the sequences {(1− θ)εi} , {yi} , and R̄ , the budget constraints imply a life-cycle con-

sumption profile, {ci} . This consumption profile can be used to back out the sequence of time

discount factors that rationalizes the profile as reflecting optimal saving decisions.32

We summarize all life cycle parameters in Table 5, including the (annualized) time discount

factors βi (with β1 normalized to 1), the life cycle profile of labor productivity εi , as well as the

percentage declines of earnings by age in the Great Recession (see Section 5.5) and the portfolio

shares for the exogenous portfolio economy (see Section 5.6). From the table we observe that βi is

generally larger than one. This reflects the fact that the data indicate strong growth in income and

net worth over the life cycle between the 20-29 age group and the 50-59 age group. However, βi

should not be interpreted solely as capturing pure time preference: it also incorporates the effects

of age variation in family size and composition on the marginal utility on consumption.

5.5 Cyclical Declines in Earnings

We think of the age profile for labor income calibrated to 2007 SCF data (discussed above) as

corresponding to the age profile for earnings in normal times {εi(zn)}Ii=1. We then measure the

percentage decline in labor income by age group between 2007 and 2010, in order to estimate how

32In the nonstochastic version of the model, the household’s intertemporal first-order condition implies that
R̄βi+1 = (ci+1/ci )

γ . Note that the consumption profile is derived directly from household budget constraints and
is pinned down by the data on labor income, net worth, and returns. Thus, the consumption profile is independent
of preference parameters. However, supporting this consumption profile as an equilibrium outcome requires the
specific discount factor profile {βi} we employ.
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recession-induced earnings losses are distributed across the age distribution. In principle, we could

measure these declines directly in the SCF, but the SCF sample size is relatively small, making it

difficult to precisely estimate age-group-specific earnings declines. We therefore turn to the much

larger March CPS. We use the 2008 and 2011 survey years, containing data for income years 2007

and 2010. Our CPS measure of nonasset income is conceptually close to the SCF measure of labor

income we used to calibrate the life-cycle profile for model earnings. This measure includes all CPS

income components except for dividends, interest, rents, and one-third of self-employment income.

The SCF and CPS life-cycle profiles for nonasset income align quite closely.

We construct the life-cycle profile for the recession state {εi(zr )}Ii=1 by multiplying the normal

state profile {εi(zn)}Ii=1 by the age-group specific percentage declines observed in the CPS, and

then renormalizing so that average efficiency in the recession state is equal to one. The declines

in earnings by age group fed into the model (zrεi(zr )− εi(zn)) /εi(zn) are shown in Table 5.33

As expected, the age-earnings profile shifts in favor of older generations in a recession, indicating

larger earnings losses and larger potential welfare costs for the young.

Note that with a period length of 10 years, earnings losses are mechanically quite persistent in

our model, consistent with the empirical literature that studies labor market outcomes of young

cohorts in deep recessions (e.g. Kahn 2010, Oreopoulos et al. 2012, and Schwandt and von Wachter

2017). Kahn (2010) documents losses in earnings following the recession of the early 1980s lasting

up to 15 years. Schwandt and von Wachter (2017) find effects that persist until 10 years into

the labor market. For a moderate recession that raises unemployment 3 percentage points, they

report a loss of cumulated earnings for labor market entrants of 60% of annual earnings. The

loss we impose in our calibration (for the Great Recession in which the unemployment rate rose

6 percentage points) is 143% of annual earnings (see Table 5), a number that accords well with

their estimates.

5.6 Calibration with Exogenous Portfolios

In our baseline model, agents choose both how much to save and how to divide savings between

stocks and bonds. We also consider an alternative version of the model in which savings is a choice,

but in which the portfolio split is exogenous. In this version, we introduce as new parameters age-

varying portfolio splits {λi}Ii=1, which we set equal to the age-group-specific shares of risky assets

in net worth in the SCF (see Table 2, reproduced in Table 5). All other parameter values are

33The differentials across age groups are similar when considering a much narrower measure of labor income that
only includes wage and salary income.
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identical to the baseline model.

Note that the nonstochastic versions of the models with exogenous and endogenous portfolios

are identical. In particular, absent aggregate shocks, agents in the model are indifferent about

which portfolio mix to hold, and thus any allocation of stocks and bonds across age groups –

including the one observed in the data – is an equilibrium. Once aggregate shocks are introduced,

the two economies are of course no longer identical.

The advantage of the exogenous portfolios model, relative to the baseline, is that by forcing

model agents to hold exactly the portfolios that actual households were holding in 2007, we generate

a very realistic distribution of capital losses across age groups in a simulated model recession. The

disadvantage of the exogenous portfolios approach is that it limits the ways in which agents can

hedge aggregate risk ex ante, and the ways they can respond to shocks ex post.34

6 Results for the Benchmark Economy

The calibration procedure just described delivers realistic life-cycle profiles for earnings and net

worth. The calibration also ensures that when the shock resembling the Great Recession hits, it

generates realistic declines in labor earnings and in aggregate asset values. These are necessary

ingredients for our model to serve as a laboratory for studying the distributional effects of large

recessions. Before exploring how the welfare costs of a recession vary by age, we first consider the

model’s implications for equilibrium asset price dynamics and for equilibrium portfolios.

6.1 Asset Pricing Predictions for the Great Recession

Figure 2 plots asset prices along a model simulation in which the sequence for aggregate productivity

features a long period of normal times, a Great-Recession-like event in period zero, and a return

to normal times in subsequent periods. From the perspective of private household expectations,

such a return to normal times was likely, but not certain. The top panel of the figure indicates

that the price of stocks falls by 29.2 percent when the recession strikes, while the price of bonds

barely moves.35

The fact that equilibrium bond prices remain largely constant reflects two offsetting economic

34In the exogenous portfolios model, one can generate equity premia of arbitrary size by appropriate choice of
portfolio shares {λi} and/or outstanding bonds B.

35Note again, as already discussed in the simple three-period model, that a low IES (γ > 1) is crucial for the
finding that risky asset prices move more than output. With a unitary elasticity (log-utility) Proposition 3 in the
appendix shows that the elasticity of asset prices to output is exactly equal to one.
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forces. On the one hand, expected consumption growth is positive in the recession state, since with

a 79.3 percent probability, output will recover in the next period. Positive expected consumption

growth constitutes an incentive for households to borrow, which pushes up the risk free rate. On

the other hand, conditional on being in the recession state, there is a 20.7 percent chance that the

economy will fall into the disaster state. The fact that disaster risk is so salient in the recession

state means that the precautionary motive to accumulate safe assets is strong, putting upward

pressure on the price of safe assets and thus downward pressure on the risk free rate.

Figure 2: Equilibrium Asset Prices
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The bottom panel of Figure 2 shows expected returns to stocks and bonds, on an annualized

basis. The expected return to stocks always exceeds the expected return to bonds, indicating a

positive equity premium.36 The equity premium jumps notably when the recession hits, because

in the recession state there is a large positive covariance between future stock returns and future

consumption. In particular, households worry about very low stock returns in the positive probability

event that the economy transits to the consumption disaster state.37 Thus they require a large

36We discuss standard asset pricing implications of the model in Section 6.6.
37When the recession simulated in Figure 2 is followed immediately by the disaster state, the stock price in the

disaster state is 74.7 percent below its pre-recession value.
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risk premium to hold stocks in the Great Recession state.

To summarize, the decline in asset values in the model recession is driven by a sharp rise in the

equilibrium risk premium depressing risky asset prices, and is not due to a rise in the equilibrium

risk free rate. Is this model-based narrative for asset price dynamics consistent with the pattern

observed empirically during the Great Recession? As documented in Section 2, the prices of risky

assets – especially stocks and housing – fell sharply from mid 2007 to mid 2009. In contrast, and

consistent with the model, the price of safe assets changed very little. For example, the yield on

10 year Treasury Inflation-Indexed bonds – perhaps the closest empirical proxy to the bond in our

model – changed little between mid 2007 and mid 2009.38

In the recovery following the model recession, stock prices recover and overshoot their pre-

recession level. This reflects the endogenous dynamics of the wealth distribution. When the shock

hits, older households, especially those in the 60–69 age group, sell additional assets to fund

consumption. Thus, after the recession, a larger share of aggregate wealth is held by younger

cohorts, who are net buyers of assets, while less is held by older sellers. This translates into higher

net asset demand after the recession and, consequently, overshooting stock prices. As younger

cohorts age, the wealth distribution gradually shifts back towards older cohorts, who are net asset

sellers. Thus stock prices fall over time.

6.2 Portfolio Implications

In the benchmark economy, households choose their asset portfolios optimally to hedge against

earnings and asset return risk. Of course, since the underlying risk is aggregate in nature, endoge-

nous portfolio choices can only achieve reallocation of this risk across different generations. Figure

3 plots the fraction of total savings in stocks by age in the model, both in normal times and in the

recession period, as well as the fraction of total savings in risky assets by age in the 2007 Survey

of Consumer Finances. Consistent with the data, younger households in the model find it optimal

to hold riskier asset portfolios than older households, resulting in a downward-sloping life-cycle

profile for the risky portfolio share. For example, in normal times the youngest model age group

has 220 percent of its savings in stocks, indicating a negative bond position equal to 120 percent

of net worth, while the oldest model age group has a portfolio comprising 54 percent stocks and

46 percent bonds. The share of risky assets in total savings also declines with age in the SCF,

38TIPS yields did fall more notably between mid 2009 and 2012, but this decline appears more secular than
cyclical in nature. Absent the Great Depression state (and thus absent time-varying aggregate risk) risk-free returns
in the model would counterfactually shoot up in the Great Recession state.
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indicating that the model offers a theoretical rationale for the observed tendency of households to

shift towards safer portfolios as they age. However, the figure also shows that the age variation

predicted by theory is more extreme than that observed in the data, with the young taking more

leveraged positions, and the old holding correspondingly more bonds than is observed empirically.

Figure 3: Portfolio Shares in Risky Assets: Models and Data
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Why do model households gradually adopt safer portfolios as they age? First, note that markets

are sequentially complete given that there are two freely traded assets and two possible next

period aggregate shock realizations z ′ conditional on each value for current output z .39 Thus, all

households born prior to the recession share consumption risk perfectly in the recession period.40

Recall that when the recession hits, stock prices fall by much more than output. Thus, younger

households, who have little wealth relative to earnings, require a more leveraged portfolio to face

the same consumption exposure to aggregate risk as older, wealthier households.41

As the economy falls into a recession, Figure 3 indicates that the age-risk profile flattens

significantly, with the youngest households choosing to reduce leverage. The logic is that in the

39We exploit this fact in the computation of this version of the model; see Appendix B.
40This is shown in Figure 4, discussed below. Note that the OLG structure of the model prevents cohorts alive

at a particular point in time from sharing aggregate risk with past or future generations.
41Note that with logarithmic preferences and symmetric earnings losses, prices fall exactly as much as output,

human and financial wealth are therefore equally exposed to aggregate risk, and asset portfolios are age invariant
(see Proposition 3 in the appendix).
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model Great Recession, a Great Depression becomes possible, with an associated collapse in risky

asset prices. This reduces the appetite of the young for risky assets. However, this group still holds

the riskiest portfolios, and, as we will demonstrate in Sections 6.3 and 6.5, benefits from buying

risky assets at temporarily depressed prices.

Overall, the age variation in portfolios in the model is somewhat larger than the age variation

in the SCF. The reason is that stock prices fall very sharply in the recession state – by three times

as much as output. Older households, who rely primarily on asset sales to finance consumption,

would suffer disproportionate consumption losses if they did not hold a significant share of bonds

in their portfolios. The flip side of the old holding a large position of bonds in equilibrium is that

the young must take a significantly short bond position to clear the bond market.

It is possible that the discrepancy between the portfolio age-profile predicted by theory and the

one observed in practice reflects economic forces absent in our model. Alternatively, it could be

that leverage constraints prevent young households from debt-financing risky asset purchases on

the scale that the theory predicts they would like to. The latter consideration is especially relevant

for real estate, which is an important component of the stock of risky assets in the SCF data. In

Section 6.4 we will therefore study a version of the model with exogenous portfolios in which we

force households to hold precisely the portfolios observed in the 2007 SCF. This will allow us to

explore the importance of portfolio allocations prior to the Great Recession for the distribution of

welfare losses by age from this large macroeconomic shock. We now document the magnitude of

these losses for the benchmark economy.

6.3 Welfare Losses from the Great Recession

Table 6 reports the welfare consequences of a model Great Recession event. These numbers are

computed assuming that the recession is preceded by a long period of normal times, with subsequent

output realizations drawn from the distribution described in Section 5. Welfare is measured as the

percentage change in consumption (in all states and over all remaining periods of life) under a

no recession scenario needed to make households indifferent between the current aggregate state

being zn rather than zr .

Each age group suffers welfare losses, but these losses are monotonically increasing in age

and differ dramatically in magnitude. Whereas the oldest cohort loses 10.0 percent of remaining

lifetime consumption, the youngest cohort – the 20 year olds who become economically active in the

recession period – experience only moderate welfare losses of 1.1 percent of lifetime consumption,
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Table 6: Welfare Losses By Age (% lifetime cons.)

Age Welfare
20-29 -1.07
30-39 -4.78
40-49 -5.69
50-59 -7.48
60-69 -9.61
70+ -10.00

even though this group’s labor earnings decline the most in the recession period.

Figure 4 plots the consumption dynamics that underlie these welfare numbers. The figure plots

changes in consumption, relative to the pre-recession state, for each of the six model age groups,

at each date along the simulation corresponding to Figure 2. The first set of bars shows the

immediate age-specific consumption responses to the recession. In this period, consumption of all

age groups except the youngest falls by 10.0 percent, while the cohort that becomes active in the

recession period sees a smaller consumption drop of only 7.0 percent.

Figure 4: Consumption Dynamics by Age
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For the oldest generation, the current recession period is the last period of life, and thus welfare

losses and current consumption losses coincide. The 10.0 percent loss for this group reflects the

combined effects of lost labor earnings due to the recession (their earnings fall 1.4 percent, according

31



to the data) and the valuation loss they suffer on the stock component of their portfolio: stocks

are 54 percent of this group’s savings, and stock prices fall by nearly 30 percent. Households in

the middle age groups see larger labor earnings losses, but are less reliant on immediate asset sales

to finance consumption. Given the portfolios they have chosen, all cohorts 30 and older end up

suffering the same immediate 10.0 percent consumption decline in the recession period, and these

same cohorts experience equal (though smaller) consumption losses in each subsequent period.

Recall again that markets are sequentially complete and thus all age groups that were economically

active in the pre-recession period share aggregate consumption risk equally.42

In contrast, the fact that the youngest group sees consumption fall by less than output indicates

that this group absorbs less than an equal share of aggregate risk. In every subsequent period, the

cohort that entered in the recession period enjoys consumption that is between 2 and 3 percent

higher than consumption of the same age group would have been in the absence of the Great

Recession. The reason the youngest age group fares so well, notwithstanding a very large hit to

labor earnings when the recession hits, is that they get to buy assets and thus shares of future

dividends at temporarily and greatly depressed prices.43 In Section 6.5 below we will further

investigate the importance of the asset price channel by considering a “partial equilibrium” version

of our model in which recessions do not necessarily entail asset price declines.

6.4 Exogenous Portfolios

We now turn to the alternative model specification described in Section 5.6 in which we impose the

risky versus safe asset portfolio shares observed in the 2007 SCF, rather than allowing households

to choose their portfolios. The key advantage of this alternative model, relative to our baseline, is

that it will more accurately replicate the empirical distribution of capital losses from price declines

of risky assets when we simulate the Great Recession. The key disadvantage is that the path for

42That is, the cohorts 40 and older experience the same consumption loss in period 1, while those 50 and older
experience the same consumption loss in period 2, and so on.

43To what extent do the differential welfare losses documented so far reflect the fact that the current old will
spend the remainder of their lives in the recession state, while younger households, in expectation, will spend the
majority of their future lives in normal times. In order to address this issue, in Table A-6 in Appendix H, we report
an alternative, wealth-based welfare loss measure. More precisely, we ask how much we must reduce wealth for
each cohort in the no-recession state for households to be indifferent between life with or without a recession in
the current period. We normalize these wealth changes by per capita consumption in normal times. Table A-6
indicates that a similar pattern of welfare losses emerges as from our consumption-based measure: welfare losses
are broadly monotonic in age in that older generations are made massively worse off by the recession, whereas
the welfare losses for the youngest generations are relatively modest. Note that the wealth-based measure shows
especially large losses for the 60-69 age cohort. It is at that age that life-cycle consumption peaks, and thus a given
percentage lifetime consumption loss translates into a large absolute wealth transfer required to compensate that
group for a Great-Recession-like event.
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the equilibrium equity premium will now be a mechanical artefact of the exogenous portfolio splits

that agents are forced to adopt, and will not capture time-varying appetite for risk.

Table 7 compares asset price declines when a Great Recession hits in the baseline endogenous

portfolio, and the alternative exogenous portfolio economy. There are two notable differences

between the two models. First, the aggregate decline in asset prices is significantly smaller in the

exogenous portfolio model. Second, bond prices fall sharply in that model – implying a counter-

factual jump in the risk free rate – while bond prices barely move in the baseline model.

Table 7: Elasticity ξ of Asset Prices to Output

Asset Baseline Model Exogenous Portfolios
Wealth 2.72 2.02
Stock 2.97 2.08
Bond -0.07 1.31

To understand why asset prices are less sensitive to aggregate shocks with exogenous portfolios,

recall that in this economy with fixed portfolios the young are assigned safer portfolios (i.e., they

have less riskless debt and less risky assets) and the old riskier portfolios with fewer safe bonds,

relative to the baseline endogenous portfolios model (see Figure 3). This means that when the

recession hits and risky asset prices fall, capital losses are smaller for younger cohorts relative to

the baseline model, whereas capital losses for older cohorts are relatively larger. Thus, the wealth

distribution in the recession period is tilted more strongly toward the young in the exogenous

portfolio model, relative to the benchmark. This difference in the change of the wealth distribution

translates into greater support for asset prices in the recession period in the exogenous portfolio

model, because younger cohorts are in the net saving part of their life cycle, whereas older cohorts

are dis-saving for life-cycle reasons.

The reason why both stock and bond prices fall in the recession period in the exogenous

portfolios economy is that households are forced to buy stocks and bonds in fixed age-specific

proportions, so the extra risk they face in the recession state by construction cannot translate into

an increase in the relative demand for safe as opposed to risky assets.44

44Why, then, do bond prices fall less than stock prices, even with exogenous portfolios? The reason is that the
young hold riskier portfolios than the old, and thus a model recession does shift the wealth distribution towards the
old (albeit less dramatically so than in the baseline model), and the old devote a larger share of their savings to
bonds. If we imposed (counter-factually) age-invariant portfolio shares for the risky asset, stock and bond prices
would fall by an identical amount.
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Table 8: Welfare Losses, Endogenous & Exogenous Portfolios (% lifet. cons.)

Age Endogenous Exogenous
20-29 -1.07 -2.39
30-39 -4.78 -2.91
40-49 -5.69 -2.54
50-59 -7.48 -7.30
60-69 -9.61 -13.73
70+ -10.00 -11.37

Table 8 compares the age distribution of welfare losses in the exogenous portfolios economy to

those in our baseline endogenous portfolio model. The broad pattern of welfare losses is similar,

with the young still suffering less than the old. Two differences are noteworthy. First, the welfare

losses for the cohort that enters the economy in the recession period are larger in the exogenous

portfolios model, by 1.3 percentage points. Second, the 60 year olds suffer also lose more with

exogenous portfolios, with losses now 13.7 percent of consumption. In both cases, the true welfare

losses are likely intermediate between the two models. In particular, for the youngest group, the

endogenous portfolio model potentially underestimates true welfare losses, since in this model the

youngest group exploit temporarily depressed stock prices by choosing highly levered portfolios,

where the degree of leverage exceeds that observed in the SCF prior to the Great Recession. On

the other hand, the exogenous portfolio model, likely exaggerates welfare losses for the youngest

group, since in that model safe interest rates counter-factually rise in the recession state, and

the young are forced to borrow. For the 60 year-olds, the endogenous portfolio model potentially

underestimates welfare losses because this group’s portfolio is too safe relative to the SCF (see

Figure 3). At the same time, the exogenous portfolio model may exaggerate welfare losses because

the 60 year-olds are not allowed to switch to a safer portfolios when the recession hits, and are

therefore excessively exposed to the risk of stock price declines should a disaster strike.45

Finally, one interesting implication of our results is that although the endogenous portfolio

model permits perfect sharing of aggregate risk between generations who enter the economy prior

to the recession, it delivers worse risk sharing than the exogenous portfolios model between existing

and newborn cohorts, because equilibrium asset prices fall sharply in the recession period.

45In the endogenous portfolio model, the 60 year-olds reallocate their portfolio towards safe assets in the recession
state, because this group will rely almost entirely on asset sales to finance consumption in the next period, when
the disaster might strike, bringing a collapse in stock prices.
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6.5 Quantifying the Asset Price Channel

How important are general equilibrium asset price movements in generating the age distribution

for welfare losses from a model Great Recession reported in Table 8? We have highlighted the

ability of the young to buy assets at depressed prices in the recession as the main reason for

their rather small welfare losses, but is this intuition correct? To address these questions we now

revisit our cost-of-a-Great Recession calculation under two alternative partial equilibrium scenarios

in which we feed in exogenous paths for asset prices.46 The two scenarios differ with respect to

what happens to asset prices at date 0.

In our first “no price recession” scenario, there is no asset price recession: aggregate start of

period wealth W in the recession period is assumed equal to its value in the pre-recession period,

and the age distribution of this wealth A is also equal to the pre-recession distribution. In our

second “no price recovery” scenario the Great Recession shock reduces aggregate start of period

wealth W by exactly the same amount as in the baseline general equilibrium model, and the

recession also changes the age distribution of wealth shares A as in the baseline model. In both

scenarios, from date 0 onward the gross return to saving agents face is constant and equal to the

return R to the aggregate market portfolio in the pre-recession period. Note that this assumption

implies no asset price recovery in the second scenario.

We assume that for all t ≥ 0 agents can trade one period Arrow securities that allow them

to perfectly insure against aggregate risk. Given these assumptions, the household problem at

age i and date 0 is to maximize expected remaining lifetime utility subject to a lifetime budget

constraint. This budget constraint imposes that the discounted present value of date- and state-

contingent consumption cannot exceed initial financial wealth AiW (which is scenario-specific) plus

the discounted present value of labor income (which is common across both scenarios), where this

present value depends on the initial aggregate state z0 and discounts future earnings at rate R .

Under both scenarios the optimal household allocation then amounts to setting consumption

at each date and state to a fixed age-dependent fraction of date 0 lifetime income. Moreover,

the welfare cost of a recession – defined exactly as in Section 6.3 – is simply the age-specific

percentage decline in the present value of lifetime resources (labor income plus initial wealth) that

the recession entails, see Appendix I. Table 9 below reports the welfare costs of a recession in the

baseline general equilibrium model from Section 6.3 (with endogenous portfolio choice), and from

46As in Section 6.3, we imagine a scenario in which a long period of normal times is followed by a Great-Recession
like shock at date 0. Also as in our previous experiment, this shock reduces current labor earnings and in addition
shifts the probability distribution over future earnings.
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the two partial equilibrium alternatives just described.

Table 9: Welfare Losses, Exogenous Asset Prices (% lifetime cons.)

Age Benchmark No Price Decline No Price Recovery
20-29 -1.07 -6.53 -6.53
30-39 -4.78 -7.19 -14.03
40-49 -5.69 -6.90 -17.40
50-59 -7.48 -6.55 -16.33
60-69 -9.61 -3.38 -11.27
70+ -10.00 -1.88 -10.00

From the table it is immediately obvious that the age distribution of welfare losses depends

crucially on the asset pricing model. To understand these differences, it is useful to conceptualize

the welfare consequences of the Great Recession for each age cohort as depending on (i) how

the recession impacts the discounted present value of their labor earnings, (ii) how it shapes the

initial value of their financial portfolio, and (iii) how much they have to gain from a possible future

asset price recovery. In the baseline model (column 1) all three forces are active, while the “no

price recession” case isolates the first force, and the “no price recovery” experiment illustrates the

combined impact of the first two effects.

The “No Price Decline” column of the table indicates that if we abstract from asset price

movements, the age distribution of welfare costs would be largely reversed relative to the baseline

case in column 1. In particular, younger age groups now experience large welfare losses, while

the oldest two groups lose much less. Note that this result arises even though the younger age

groups do not expect to live their whole lives in the recession state, while the 70+ group do,

and the 60 year-olds have the not very pleasant prospect of a decade of recession followed by the

risk of a disaster in their last decade of life. The reason for these changes in the distribution of

the welfare losses when we shut down asset price movements is two-fold. First, the young face

larger percentage declines in labor earnings in the recession state. Second, the old rely much more

on savings to finance consumption than labor earnings, and in the “No Price Decline” scenario

the recession does not dent the value of their savings. We conclude that abstracting entirely from

asset price movements would give an extremely misleading picture of the age distribution of welfare

losses from the Great Recession.

Moving to the “No Price Recovery” column now adds the welfare costs of capital losses from

declining asset prices, assumed to be permanent in this scenario. This drastically increases the

average welfare cost of the recession in the economy, and also changes the age distribution of
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these costs. The cost for the youngest group is unaffected (relative to column 3) because this

group starts its economic life with no assets, whereas the cost for the oldest group is as in the

baseline general equilibrium model (column 2) because whether or not asset prices recover in the

future is irrelevant for this group. The welfare costs are largest for 40 and 50 year olds, who suffer

both significant declines in labor earnings, and large capital losses on their portfolios.

Comparing the “No Price Recovery” case to the baseline model indicates that the expected asset

price recovery that arises in general equilibrium sharply reduces the welfare costs of the recession

for younger age groups. In fact, because younger age groups are life-cycle savers, they actually

suffer smaller welfare losses in the baseline model – in which prices fall and then recover – than in

the “No Price Decline” model in which prices never move. This effect is most extreme for the new

born, who suffer no capital losses, but benefit greatly from expected asset price appreciation.

Overall, the partial equilibrium thought experiments in this section make very clear that in order

to assess the level and age distribution of welfare costs from the Great Recession, it is crucial to

incorporate into the analysis the impact of asset price movements. Moreover, it is critical to make

forecasts about future asset prices, in addition to specifying how asset prices move in the recession

itself. The key advantage of our general equilibrium structural approach is that the theory itself

generates joint predictions for the probability distribution over future labor income and future asset

prices, which imposes discipline over asset price dynamics, and their covariance with earnings and

consumption.

6.6 Standard Asset Pricing Implications

Section 6.1 documented that the model captures well the two asset price facts that are central for

quantifying the welfare consequences of the Great Recession by age: the large observed decline

in risky asset prices and the relative constancy of the risk-free interest rate. We again want to

stress that it is not our intent to build a model that offers a realistic account of movements in

financial asset returns over typical business cycles. With that caveat in place, we now offer a

broader discussion of our model’s asset pricing properties.

Table 10 summarizes the mean and volatility of risky asset and risk-free bond returns, as well

as their correlation. We also report their empirical counterparts, derived from the updated Shiller

(1992) annual data on stock and bond returns. For both the model and the data we calculate

10 year returns and report (annualized) means and standard deviations of log gross returns.47 In

47Because the model is solved at a 10 year frequency, return statistics are calculated directly based on a long
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order to understand the importance of the possibility of Great-Depression-like disasters for asset

pricing moments we also report model-based statistics that ignore these low probability events.

In addition to providing further insight into how our model works, one could also interpret these

statistics as emerging from a version of our model in which the disaster state exists in the minds of

model agents but never materializes in reality, or as offering a theoretical counterpart to empirical

moments drawn from samples in which no disasters occur (such as the postwar U.S.)

Table 10: Statistics for 10-Year Returns

Benchmark Model
Asset Average Std. Dev. Correlation
Stock 4.50% 31.2%
Bond 4.09% 25.3% 0.79

Model w/o Disasters
Asset Average Std. Dev. Correlation
Stock 4.41% 16.6%
Bond 3.68% 1.2% -0.07

Data
Asset Average Std. Dev. Correlation
Stock 6.62% 36.4%
Bond 2.29% 30.4% 0.01

Comparing the top and bottom panels of the table, we observe that the volatility of ten year

model stock and bond returns lines up well with the data, including the extent to which stock

returns are more volatile than bond returns. Comparing the top and middle panels of the table

indicates that the small possibility of slipping into a Great Depression, conditional on experiencing

a Great Recession, is crucial for these results. Abstracting from the Great Depression both stock

and especially bond return volatility would be counterfactually low. The table also suggests that

stock and bond returns co-move too strongly in the model, relative to the data (top versus bottom

panel), but this co-movement is driven exclusively by rare model disasters in which both stock and

bond prices collapse and the real interest rate jumps.48 In the one disaster in the data – the Great

Depression – real interest rates were in fact high (see Table 2, column 11 in Hamilton, 1987).

Average returns to risky assets in the model exceed average returns to bonds, but if we interpret

simulation of model stock and bond returns. We simulate the model for a large number of periods because
Great-Depression-like disasters are rare but important for return volatility.

To calculate the empirical counterparts to model return moments we use the series on Shiller’s website, which
span the period from 1871 to 2014. We derive 10 year gross returns as the product of 10 year contiguous annual
gross returns based on the data from 1874-2014. Details of our calculations are contained in Appendix G.

48The empirical correlation is sensitive to the sample: see Appendix G.
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the risky asset in the model narrowly as corresponding to traded equity then the model does not

generate a large enough equity premium. The model premium is roughly 40 basis points per annum,

compared to more than 400 basis points in the data.

Notwithstanding that our main objective is to study a specific historical episode, this relatively

small equity premium seems to offer a case for adopting a more flexible preference specification, as

in Epstein and Zin (1989) and Epstein and Zin (1991), that allows for high risk aversion without

imposing a low intertemporal elasticity substitution. We now use a representative agent (RA)

version of our model to justify our choice of time-separable preferences (solving the full overlapping-

generations economy accurately for very high risk aversion is computationally challenging). Table

11 displays selected asset pricing statistics for this version of the model, for varying degrees of risk

aversion and the intertemporal elasticity of substitution.

Table 11: Epstein-Zin Preferences in the Representative Agent Model

Risk. Aver. IES r(zn, An) r(zr , Ar ) Equity Premium Wealth Decline
OLG (1) 4.24 1/4.24 3.73 3.66 0.40 -26.8
RA (2) 4.24 1/4.24 3.57 3.69 0.56 -29.2
RA (3) 4.76 1/3.77 3.65 3.65 0.52 -26.8
RA (4) 100.00 1/4.75 0.16 -6.12 3.61 -26.8

Row (1) is the baseline overlapping-generations model. Rows (2), (3), and (4) are representative agent economies

with different values for risk aversion and for the IES. All other parameters are identical to the baseline model, with

β = 1
1.5485 . Risk free rates are r(z ,A) = 100 ×

(
1

q(z,A) − 1
)

. The equity premium is the unconditional average

annualized excess return to stocks, in percent. Recession wealth declines are 100 ×
(

p(zr ,A′)+q(zr ,A′)B
p(zn,A)+q(zn,A)B − 1

)
. In

the representative agent model, the wealth distribution A is not a state variable. In the overlapping-generations

economy, risk-free rates and wealth declines are computed assuming that An, the pre-recession wealth distribution,

is the equilibrium distribution following a long period of normal times. The recession distribution, Ar , is given by

the equilibrium law of motion Ar = G (zn,An, zr ).

The first two rows of the table indicate that with our baseline parameterization the RA and

the OLG versions of the model have broadly similar implications for average returns to safe and

risky assets, indicating that we can safely use the representative agent version as a laboratory for

exploring alternative specifications. The third row of Table 11 indicates that if we were to target

both the exact fall in risky asset prices and a constant real risk-free interest rate, the required risk

aversion and inverse of the IES, while not exactly equal to each other, would numerically be close.

Since plausible asset price dynamics during a model Great Recession are important for our welfare

analysis, we are therefore naturally drawn toward something close to time-separable utility.

To reinforce this point, suppose we were to follow many asset pricing papers and set the risk
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aversion coefficient to generate an equity premium on the order of 4% (as documented empirically

in Table 10) while still choosing the IES to match the fall in risky asset prices observed in the

Great Recession. In the representative agent version of our model this requires a risk aversion in

excess of 100 and an IES of 1/4.75. However, as the last row of Table 11 documents, a model

Great Recession is now associated with a massively counterfactual fall in the risk-free rate. In

our OLG model such an interest rate decline would allow the youngest generation to borrow at

a negative risk-free rate to finance risky asset purchases. However, we do not want to pursue a

welfare analysis that rests on a counter-factual collapse in the risk-free rate.

6.7 Movements in the Wealth Distribution in the Great Recession

The asset price movements and endogenous portfolio adjustments implied by the model induce

shifts in the wealth distribution over the cycle, and thus in the model Great Recession (and subse-

quent recovery). In this section we discuss how the implications of the model along this dimension

line up with data from the SCF. Recognizing that the SCF is available for 2007, 2010 and 2013,

our preferred interpretation of the empirical time series is that 2007 captures the period before the

Great Recession (with peak asset prices), that 2010 is a period in the midst of the recession (when

asset prices have fallen but not recovered), and that 2013 reflects a time when the economy has

at least partially recovered.

Table 12 reports the dynamics of net worth shares in both model and in the SCF. For both

the baseline and exogenous portfolio model specifications, we report net worth shares in three

consecutive model periods: (i) the pre-recession state (where the economy has been in the normal

state for many periods), (ii) the period in which the large recession strikes, and (iii) the post-

recession period, assuming a recovery in output. Model net worth for age group i in year t is

measured as the period t pre-dividend value of stocks purchased at t− 1 plus the income accruing

to bonds purchased at t − 1 :

net worthit =
λi−1,t−1yi−1,t−1

pt−1
(pt + dt) +

(1− λi−1,t−1)yi−1,t−1

qt−1

Given this definition, net worth shares by age correspond exactly to the model state vector A:

net worth shareit =
net worthit

I∑
j=1

net worthjt

= Ait .

40



We measure net worth shares by age in the SCF analogously. In particular, we divide each age

group’s average net worth by the unweighted sum of average net worth across groups.

Table 12: Dynamics of Net Worth Distribution: Models and Data

Endogenous Portfolios Exogenous Portfolios Data: Net Worth SCF
Age Pre-Rec. Rec. Recov. Pre-Rec. Rec. Recov. 2007 2010 2013
20-29 0.00 0.00 0.00 0.00 0.00 0.00 2.30 1.27 1.50
30-39 6.29 4.20 7.74 6.25 5.67 5.75 5.95 4.20 6.05
40-49 14.73 11.98 14.61 14.42 14.06 13.35 13.94 13.97 14.25
50-59 25.59 25.20 25.23 25.31 25.28 24.90 24.70 24.52 22.92
60-69 31.76 34.71 31.21 32.03 32.44 31.84 31.45 32.66 30.53
70+ 21.62 23.91 21.21 21.99 22.55 24.16 21.67 23.38 24.74

total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

In the model, when the economy transits from normal times to the Great-Recession state,

the wealth shares of the 30 and 40 year-old age groups decline on impact, whereas those of the

older age groups increase.49 This shift in the wealth distribution towards older cohorts is driven

purely by the fact that the young choose riskier portfolios in normal times (or are forced to hold

riskier portfolios in the exogenous portfolios version of the model). When asset prices subsequently

recover, the same life-cycle portfolio risk profile disproportionately benefits the young, and their

wealth shares recover as the economy returns to the normal state.

In addition to these mechanical movements due to endogenous asset price fluctuations and

age heterogeneity in portfolios, the baseline model with endogenous portfolios also predicts that

the cohort that becomes economically active in a recession (who are in their 20’s in the recession

period, and in their 30’s in the recovery period) benefits from being able to purchase assets at

depressed prices, and is therefore unusually asset-rich in the recovery period. The changes in net

worth shares are larger in the endogenous portfolio specification, where the young choose more

levered portfolios in the recession period, and therefore gain more from the asset price recovery.

The net worth share dynamics observed in the data are similar to those predicted by the theory,

and generally lie in between the two alternative model specifications. The share of aggregate net

worth held by 30 year-olds declined from 5.95% in 2007 to 4.20% in 2010, whereas the share of the

70+ group increased from 21.67% to 23.38%. Subsequently, the net worth share of 30 year-olds

rebounded to 6.05% in the 2013 SCF. This rebound is consistent with their having benefited from

49Recall that the youngest age group is born with zero assets and thus its wealth share is unaffected.
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saving at depressed prices, though more time and data is required to assess whether the recent

asset price recovery will permanently boost their wealth share.

7 Robustness of Our Results

The purpose of this section is to investigate the robustness of our results to alternative param-

eterizations and modeling assumptions. First, in Subsection 7.1, we analyze the importance of

the nature of the stochastic productivity process for the potency of the asset price channel. In

Subsection 7.2 we assess the importance of the heterogeneous labor market experience across age

cohorts in the Great Recession for the welfare results. Finally, Subsection 7.3 evaluates the relative

significance of the asset pricing and labor market effects when households differ in their wealth

positions within age cohorts.

7.1 Level- or Growth-Rate Shocks?

In our model, aggregate output z is mean reverting, which implies that in a model recession output

and asset prices are expected to recover (although they might fall further if the economy enters

the disaster state). Under what conditions are our results robust to introducing permanent shocks

to z? To provide a transparent answer to this question, we turn back to the three-period version of

our model from Section 4, but now assume that the growth rate of output g ′ = z ′/z follows a finite

state Markov process with state space G and transition matrix Γg ,g ′ . In Appendix F.2 we show that

the optimality and market clearing conditions used to compute the equilibrium asset price function

and law of motion are virtually identical to those in our benchmark model, but expressed in terms

of the price-output ratio p̃(g , A) = p(z,A)
z

where the exogenous growth rate g between last period

and today takes the place of the exogenous state variable z .

In this section we make three points. First, we show that the asset price decline (relative

to output) in the model with stochastic growth rates is comparable to the decline in the model

with trend-stationary output if and only if output growth over longer time periods (ten or twenty

years) is negatively serially correlated, as it is in U.S. data. Second, we will show that the absolute

welfare losses from a model recession are significantly larger in the stochastic growth economy for

all but the oldest generation. Third, the relative welfare losses by age are quite similar across the

growth-rate stationary and trend stationary specifications.

We retain the same calibration as in Section 4, but now assume that output growth can take

two equally likely values g ∈ {gn, gr} that satisfy gngr = 1 and gr/gn = zr/zn. Thus, the output
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decline when the economy falls into a Great Recession is as large as in the trend-stationary model

and equal to zr/zn − 1 = 9.84%. The serial correlation of growth rates is determined by the

persistence of both states, Γrr = Γnn. Real output per capita growth rates over 10 or 20 year

intervals are negatively correlated in U.S. data. Using data from 1900 on yields a serial correlation

of twenty year growth rates of -0.55, which the model replicates given Γrr = Γnn = 0.225.

Figure 5: Relative Asset Price Decline: Level vs. Growth Rate Shocks
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In Figure 5 we display the relative asset price decline ξ as a function of the wealth distribution,

both for the trend-stationary version of the model from Section 4 (with same parameterization)

and for the version with stochastic growth rates, for γ ∈ {1, 4.24, 8}. This is the analog of Figure

1 from Section 4. The main takeaway is that the elasticity of asset prices with respect to output

movements is qualitatively similar in the two specifications as long as the growth rate in the

stochastic growth rate case is negatively correlated over time. As before, the elasticity of prices to

output movements is larger the greater is the wealth share of the price-elastic middle-aged.50

As in the model with shocks to the level of productivity, larger asset price movements – induced

either by a smaller IES (1/γ) or by a larger wealth share of the middle-aged – are associated with

50For γ = 1, the percentage decline in asset prices is equal to that in output in both versions of the model,
independent of the wealth distribution A. Thus ξ ≡ 1 for both versions of the model when γ = 1. The same is true
(ξ ≡ 1) in the stochastic growth rate model whenever the growth rates are iid. See Appendix F.2.
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Table 13: Welfare Losses, Level vs. Growth Rate Risk (% lifetime cons.)

Age Group Shocks to z Shocks to z ′/z
Young 2.9 −5.0
Middle −3.7 −6.0

Old −12.3 −11.4

more benign welfare consequences for the young. Table 13 summarizes the welfare losses from

entering a recession, in both versions of the model, following a long sequence of good shocks

(the wealth share of the old is then close to 40%). The table shows that if the output fall has a

permanent component, then welfare losses for the young are larger than under the mean-reverting

output scenario. In the stochastic growth version of the model it is therefore hard to argue that

the youngest generation might actually gain from a large recession. However, the fact that they

suffer less than other generations is robust across both versions of the model, although the extent

to which this is true is more pronounced in the benchmark level-shock specification.

Finally, if 20-year output per capita growth rates were (counter-factually) positively correlated,

then, at least for the time-separable CRRA preferences with γ > 1 considered here, the model

with growth rate shocks predicts asset price declines that are smaller than output declines (ξ < 1)

and, consequently, welfare losses from a large recession that are declining with age. For example,

if Γll = Γhh = 0.6, implying a serial correlation of g equal to 0.2, we find that at a wealth share of

40% for the old, ξ = 0.94 and welfare losses for the young are 3 percent larger than losses for the

old. Thus, this specification of the model reinforces the point that large asset price declines play

a central role in mitigating young households’ welfare losses from large recessions.

7.2 The Importance of Asymmetric Earnings Losses

In Section 2 we documented that one salient feature of the Great Recession was that earnings losses

were concentrated among young households. In this section we demonstrate that our finding of

modest, but positive welfare losses for the young hinges on this fact. We now display results

for an economy identical to the benchmark, but in which all age cohorts face counterfactual

symmetric income losses of 9.84%, equal to the aggregate income loss (relative to trend) observed

in the data. From Table 14 we see that now the young actually gain from a Great Recession

(see the third column). Thus, as suggested by the simple three-period model discussed above,

the large asset price decline in the recession would actually have left the young better off, had

they not been simultaneously disproportionately affected by earnings losses. Even though this is
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a counterfactual scenario, it illustrates both the potency of the asset price movement channel as

well as the importance of the severe downturn in labor income the youngest cohorts experienced.

Table 14: Welfare Losses, Asymmetric & Symmetric Earnings ∆ (% lifet. cons.)

Age Benchmark Sym. Earnings Losses
20-29 -1.07 0.32
30-39 -4.78 -5.04
40-49 -5.69 -5.90
50-59 -7.48 -7.64
60-69 -9.61 -9.74
70+ -10.00 -10.09

The table also shows that the welfare losses of older generations increase only moderately in

the symmetric earnings loss scenario. While these cohorts suffer larger labor income declines, the

associated welfare costs are moderated by two forces. First, facing more earnings risk, the old

choose less risky portfolios. Second, the equilibrium decline in the price of risky assets is smaller in

this economy. The reason is that with symmetric earnings losses, young households on the asset

demand side of the market are less income poor, and thus prices have to drop less in the recession

period to induce these households to buy up the assets. As a result, the elasticity of aggregate

asset values to income declines from 2.72 to 2.64.

7.3 Accounting for Intra-Cohort Heterogeneity

Our baseline calibration replicates average income and wealth by age. However, it is well known

that a large fraction of aggregate wealth is held by a relatively small fraction of households. Thus,

one might wonder whether less wealthy households are likely to experience similar welfare losses

across the life cycle. To address this question, we now consider an alternative version of the model

in which there are two types of households: a wealthy type and a low-wealth type. We assume

that the wealthy type accounts for a fixed fraction κy of aggregate labor earnings and passively

holds a fixed fraction κa of aggregate debt and equity. It follows that the wealthy consume a fixed

fraction (1− θ)κy + κaθ of aggregate output at each date. Because the wealthy type is assumed

to invest passively, assets are priced by the low-wealth type, and prices fluctuate such that this

type always demands (1− κa) shares and κaB bonds.

Since the wealthy type accounts for fixed fractions of earnings, asset holdings, and consump-

tion, we can solve for equilibrium allocations by ignoring the wealthy group altogether and simply

recalibrating the baseline model to target a lower wealth to labor income ratio corresponding to
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W̄ P = (1−κa)
(1−κy )

. We identify the wealthy type with households in the top 10% of the net worth dis-

tribution in the 2007 SCF, which implies κa = 0.678, κy = 0.334, and W̄ P = 0.483W̄ . Retaining

our original targets for R̄ and λ̄, implies new values for the supply of bonds and for capital’s share

of BP = 0.0400 and θP = 0.1729.

Given the life-cycle profiles for labor income and for net worth for the low-wealth group, we

can follow the procedure outlined in Section 5 to reverse engineer the life-cycle profile
{
βP
i

}
that

rationalizes the implied life-cycle profile for consumption for the low-wealth group. Because this

group does less life-cycle saving, its consumption rises less rapidly over the life cycle, and the

implied discount factors are therefore smaller. We will focus on the model specification in which

agents choose both total savings and the portfolio split between equity and bonds, and report

results for earnings losses that are asymmetric and symmetric across ages in the Great Recession.

We retain our baseline value for risk aversion, γ = 4.24.

The equilibrium decline in asset prices in the new low-wealth economy (with asymmetric earnings

losses) when the recession hits is 2.48%, slightly smaller than the 2.72% decline in the baseline

model. As in the benchmark economy, bond prices hardly move and stock prices fall by close to

three times as much as output. Table 15 compares the welfare losses associated with entering a

recession in the low-wealth economy with those in the baseline model. The distribution of losses by

age is broadly similar to that in the benchmark economy, with the exception that now the youngest

generation suffers more significant welfare losses (5% rather than 1%). This reflects two factors.

First, the young are now more impatient, and thus care relatively less about the future, when

asset prices recover. Second, the young now hold less wealth that will benefit from price recovery

in the first place. Thus, the young now evaluate the recession more similarly to hand-to-mouth

consumers, for whom the asset pricing channel is less important.

Table 15: Welfare Losses: Low-Wealth Calibration (% lifetime cons.)

Age Group Baseline Wealth Low Wealth
Asym. ∆ Earnings Sym. ∆ Earnings Asym. ∆ Earnings Sym. ∆ Earnings

20-29 -1.07 0.32 -5.12 -3.01
30-39 -4.78 -5.04 -6.76 -7.08
40-49 -5.69 -5.90 -7.23 -7.51
50-59 -7.48 -7.64 -8.20 -8.45
60-69 -9.61 -9.74 -9.57 -9.79
70+ -10.00 -10.09 -9.88 -10.03

Comparing the welfare consequences across the different model specifications indicates that
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the welfare consequences of the Great Recession for the young are likely quite heterogeneous,

depending on the relative importance of the labor market and asset market effects. Those young

households not especially severely hurt in the labor market (i.e. those who do not lose their job) and

with significant (future) participation in the asset market likely gained from the Great Recession

(column 3). On the other hand, young households with more adverse labor market outcomes

and with no strong involvement in financial markets faced welfare losses more similar to older

households (column 4).

8 Conclusion

These last findings bring us back to the main point of the paper, which is that there is a silver lining

for young households in the Great Recession stemming from the dynamics of asset prices. We have

argued that this asset price channel is quantitatively important, and that it should therefore be

incorporated alongside labor market effects when assessing the distribution of welfare losses from

the Great Recession across age groups.

Knowledge about how the welfare costs of recessions are distributed across the age distribution

can help inform the discussion of the appropriate policy response. Many of the policies that have

been implemented in response to the Great Recession have redistributive consequences across

generations. For example, financing an increasing share of the government budget through debt

rather than taxation shifts the tax burden toward the young and future generations in life cycle

economies, and benefits older age groups. Similarly, the Troubled Asset Relief Program (TARP)

and large-scale asset purchases by the Federal Reserve were policies more or less explicitly designed

to support asset prices. To the extent that these policies were successful, they disproportionately

benefitted wealthier households who tend to be older.51 Given the age-asymmetric welfare losses

we have estimated, a distributional argument can be made in favor of such policies.

51Another important policy response was a dramatic extension of unemployment benefits. On the one hand, this
favored younger workers, who bore the brunt of rising unemployment. On the other, older workers are more likely
to be eligible to receive benefits. In 2010, the numbers of insured unemployed in the 25-34, 35-44, and 45-54 age
groups were very similar (Department of Labor, Employment and Training Administration).
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Appendix (for Review and Online Publication Only)

A Exploiting Sequentially Complete Markets in the Economy with En-

dogenous Portfolios

Since in our applications the number of values the aggregate state zprime can take tomorrow is

two for every state z today, markets are sequentially complete when households can freely trade

a bond and a stock, even though z can take three values. We exploit this for the purposes

of characterizing equilibrium prices numerically. In particular, after having solved for equilibrium

allocations (as described in the next section), we can easily construct prices of state-contingent

claims (Arrow securities). We then reconstruct the equilibrium prices of conventional stocks and

bonds as additional (effectively redundant) assets. For completeness, we here supply the equilibrium

definition for the economy with a full set of Arrow securities.

Let ai(z ′) be shares of stock purchased by a household of age i . These shares represent a claim

to fraction ai(z ′) of the capital stock if and only if aggregate state z ′ is realized in the next period.

The state of the economy is the distribution of shares of stock A, given the current period shock

z . We denote the state-contingent stock prices P(z , A, z ′).

With this asset market structure, the maximization problem of the households now reads as

vi(z , A, a) = max
c≥0,a′(z ′)

{
u(c) + βi+1

∑
z ′∈Z

Γz,z ′ vi+1 (z ′, A′(z ′), a′(z ′))

}
(A-1)

s.t. c +
∑
z ′

[a′(z ′)− a] P(z , A, z ′) = εi(z)w(z) + d(z)a (A-2)

A′(z ′) = G (z , A, z ′) (A-3)

with solution ci(z , A, a), a′i(z , A, a, z ′).

Definition 2. A recursive competitive equilibrium with complete markets are value and policy func-

tions {vi , ci , a′i}, pricing functions w , d , P, and an aggregate law of motion G such that:

1. Given the pricing functions and the aggregate law of motion, the value functions {vi} solve

the recursive problem of the households and {ci , a′i} are the associated policy functions.
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2. Wages and dividends satisfy

w(z) = (1− θ)z and d(z) = θz . (A-4)

3. Markets clear

I∑
i=1

ci(z , A, Ai) = z (A-5)

I∑
i=1

a′i(z , A, Ai , z ′) = 1 ∀z ′ ∈ Z . (A-6)

4. The aggregate law of motion is consistent with individual optimization

G1(z , A, z ′) = 0

Gi+1(z , A, z ′) = a′i(z , A, Ai , z ′) ∀z ′, i = 1, ..., I − 1. (A-7)

We now describe how we reconstruct returns and prices for conventional stocks and bonds,

given the prices of state-contingent shares, exploiting the equivalence between the two market

structures when the aggregate shock takes only two values. Let W (z , A) denote the value of the

(unlevered) firm after it has paid out dividends. This is equal to the price of all state-contingent

shares:

W (z , A) =
∑
z ′∈Z

P(z , A, z ′). (A-8)

In the presence of state-contingent shares, risk-free bonds and levered stocks are redundant assets,

but they can still be priced. We now compute these prices q(z , A) and p(z , A) as functions of

the state-contingent prices P(z , A, z ′) and W (z , A). There are two ways of securing one unit of

the good unconditionally in the next period. One could either buy one unit of the risk-free bond

at price q(z , A) or instead buy a bundle of state-contingent shares for each possible z ′, setting

the state-specific quantity to 1/ [W (z ′, G (z , A, z ′)) + θz ′] so as to ensure a gross payout of one in

each state. A no-arbitrage argument implies that the cost of the two alternative portfolios must

be identical:

q(z , A) =
∑
z ′

P(z , A, z ′)

W (z ′, G (z , A, z ′)) + θz ′
. (A-9)
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With the bond price in hand, the stock price can immediately be recovered from the condition

that the value of the unlevered firm (in the economy with state-contingent shares) must equal the

value of levered stocks and risk-free bonds:

p(z , A) = W (z , A)− q(z , A)B . (A-10)

B Computational Appendix

Even for a moderate number of generations, the state space is large: I−2 continuous state variables

(plus z). Since we want to deal with large shocks, local methods should be used with caution. We

therefore use global approximation on sparse grids, thereby respecting the size of our aggregate

shock while avoiding the curse of dimensionality. The baseline model takes advantage of the fact

that our two assets span the space of possible shocks, therefore allowing us to solve the model via

a planning problem using the Negishi algorithm. The fixed-portfolio economies do not solve such

a planning problem, so we must directly solve for the competitive equilibrium.

B.1 Endogenous Portfolio Economy

In our economy with endogenous trade in stocks and bonds, there are two assets and two values

for the aggregate shock. Thus, the set of agents who are active at dates t − 1 and t select

portfolios that pool date t risk perfectly and share the same growth rate for the marginal utility

of consumption. But it is impossible for agents active at date t − 1 to share risk with agents who

enter the economy at date t, and thus shocks at t reallocate resources between the newborn and

existing cohorts.

The computational challenge for characterizing equilibrium allocations is to characterize this

reallocation. As Brumm and Kubler (2013) show, the key condition that pins down the share of the

newborns is their lifetime budget constraint that must be satisfied. Thus, computing a competitive

equilibrium amounts to solving for a law of motion for the consumption share of newborn agents,

with the property that the present values of lifetime income and consumption are equal with zero

initial wealth. We now formally describe this way of characterizing competitive equilibrium.

Let the aggregate state be z and the vector λ = λ1, ...,λI where λi ∈ [0, 1] for all i . Let λ

define age group i ’s share of aggregate output as follows for i = 1, ..., I :

ci(z ,λ) = λiz (A-11)
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Let λ′ = G (z ′,λ) define a law of motion for λ and thus a resource-feasible allocation. We will

use the notation λ′i = Gi(z ′,λ).

Allocations in the competitive equilibrium with endogenous portfolios are defined by one par-

ticular specification for G (z ′,λ).

The numerical challenge is to characterize G1(z ′,λ) which defines λ′1. Given G1(z ′,λ), we will

see that the remaining Gi(z ′,λ), for i = 2, ..., I , defining consumption shares for agents of ages

i = 2, ..., I in the next period are given by

λ′i = Gi(z ′,λ) =β
1
γ

i

(1− G1(z ′,λ))∑I−1
i=1 β

1
γ

i+1λi

× λi−1 i = 2, ..., I . (A-12)

The logic for this specification, as we will see shortly, is that it guarantees that all agents share

the same state-contingent inter-temporal marginal rate of substitution. Note that, by construction

I∑
i=1

λ′i = 1

We now describe how we solve for the function G1(z ′,λ) corresponding to the competitive

equilibrium.

Define, for i = 1, ..., I − 1

pi(z , z ′,λ) = π(z ′|z)
Πi+1

l=1βlci+1(z ′,λ′)−γ

Πi
l=1βlci(z ,λ)−γ

(A-13)

= π(z ′|z)
Πi+1

l=1βl
(
λ′i+1z ′

)−γ
Πi

l=1βl (λiz)−γ

= π(z ′|z)
(1− G1(z ′,λ))∑I−1

i=1 β
1
γ

i+1λi

(
z ′

z

)−γ
.

where the second line substitutes in the consumption sharing rule (A-11), and the third line uses

the law of motion (A-12). Note from the third line that pi(z , z ′,λ) is independent of i .

Next define functions Bi(z ,λ) as follows, starting from i = I , and moving sequentially down
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to i = 1:

BI (z ,λ) = cI (z ,λ)− wI (z) (A-14)

Bi−1(z ,λ) = ci−1(z ,λ)− wi−1(z) +
∑
z ′∈Z

p(z , z ′,λ)Bi(z ′,λ′)

B1(z ,λ) = c1(z ,λ)− w1(z) +
∑
z ′∈Z

p(z , z ′,λ)B2(z ′,λ′),

where in each case λ′ = G (z ′,λ).

Claim Given the sharing rule (A-11) and the law of motion Gi(z ′,λ) for i ≥ 2 (A-12), the

allocation defined by a function G1(z ′,λ) is a competitive equilibrium in the stock economy if and

only if the implied B1(z ,λ) = 0 for all z ,λ.

Proof First, note that allocations in the stock economy are identical to those in an economy

in which agents trade two Arrow securities, each of which pays out if and only if one particular value

for the aggregate shock z is realized. In an economy with trade in Arrow securities, the conditions

defining a competitive equilibrium are: (i) security prices reflect state-contingent marginal rates of

substitution, (ii) the agent’s budget constraints are satisfied at each age, where financial wealth

at age i = 1 is zero, and (iii) the aggregate resource constraint is satisfied. These conditions are

all satisfied by the allocation described above: condition (i) is equation (A-13), condition (ii) is

equations (A-14), and condition (iii) is satisfied by virtue of equation (A-11).

Note finally that for computational purposes it is not necessary to carry around the entire vector

λ since
∑I

i=1 λi = 1. Thus, a sufficient state vector is
(

z , {λi}I−1
i=1

)
. The law of motion A-12 is

still sufficient to define consumption for all age groups in the next period.

We now move to solving for the unknown function G1 described above. In order to solve the

model we implement the following algorithm:

1. Initiate a grid of L = {λj}Jj=1, where each λj is an I − 1 dimensional vector. These will be

the collocation points and are in practice sets on a Smolyak grid.

2. For each z ∈ Z, and each j = 1, ..., J , guess a value G1(z ,λj). Use these guesses to

construct an interpolating function Ĝ1(z ,λ) for any vector λ. In practice, we use Chebyshev

polynomials in this step.

3. For the (#Z)I−1 possible histories through which a newborn agent could live, and for each
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j = 1, ..., J , use Ĝ1 to construct consumption allocations, Arrow securities prices, and budget

errors as described above. The interpolation is necessary because the vector of weights will

typically not lie on the grid after one period passes.

4. Steps [2] and [3] create #Z × J equations (the budget errors for each shock value and each

collocation vector) in the same number of unknowns (the values of G1 for each shock and

collocation vector). We use a nonlinear root finder to solve this system of equations.

B.2 Fixed Portfolio Economy

Relative to the methods described in Krueger and Kubler (2004, 2006), there are two additional

complications in the present model. The first is that, while the sparse grids used there are subsets of

(I −1)−dimensional cubes, wealth shares used in this paper are defined on the (I −2) dimensional

simplex. We deal with this issue by defining the state space in levels of wealth rather than in shares,

and then we map a generation’s level of wealth into a share when evaluating the Euler equations.

The second complication is that the prices of the assets cannot be read off the first-order conditions

in this model52 but must instead adjust so that the excess demand for stocks and bonds is zero in

both cases. We now describe our algorithm for solving the model.

1 Solve for the steady state prices and wealth levels: p, q, W = (W 2, W 3, ..., W I−1, W I ). As

described above, we work with an endogenous state space of dimension I − 1 rather than

I − 2 and then map wealth levels into wealth shares.

2 Create a sparse grid around the steady state wealth distribution. Call this grid W. We verify

ex-post that the wealth distribution stays within this hyper-cube along the simulation path.

3 We start with an outer loop over prices (this loop was unnecessary in Krueger and Kubler

(2004)). At an outer loop iteration n we have guesses from the previous iteration for Cheby-

shev coefficients (αp,n
z ,αq,n

z ) for the prices that are used to compute the values of prices (p, q)

for each realization of z and each point W ∈W in the endogenous state space. We denote

the vector of price values by (ψp,n
z,W ,ψq,n

z,W )W∈W. The Chebyshev coefficients (αp,n
z ,αq,n

z ) also

determine the pricing functions on the entire state space, denoted by (ψ̂p,n
z , ψ̂q,n

z ), somewhat

abusing notation.53

52One can do this in production economies where factor prices equal marginal productivities
53Note that this notation implies ψ̂p,n

z (W ) = ψp,n
z,W .
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4 Given approximate pricing functions in the inner loop, we iterate over household policies.

In this loop we generate both the savings policy function and the law of motion for the

wealth distribution consistent with approximate price functions (ψ̂p,n
z , ψ̂q,n

z ). The savings

policy is indexed by generation and current state z , and so the current guess of the savings

policy function at policy iteration m when the price iteration is n is determined by Chebyshev

coefficients of the form (αy ,n,m
z,i ). These can be used to compute the optimal savings level

at each grid point W and is denoted by (ψy ,n,m
z,i ,W ). As in the previous step, the Chebyshev

coefficients also determine the entire approximating savings functions (ψ̂y ,n,m
z,i ). The law of

motion for wealth is a function of savings, current prices, and future prices; it must therefore

be indexed by current state z , generation i , and future state z ′. Similarly, the Chebyshev

coefficients (αG ,n,m
z,i ,z ′ ) are used to compute the law of motion (ψG ,n,m

z,i ,z ′,W ) for all points W ∈W
and to generate the approximating functions ψ̂G ,n,m

z,i ,z ′ .

5 At this point we loop over each value of z and each point in W ∈ W and solve the I − 1

Euler equations for the I − 1 optimal savings levels, yi ,z,W . The Euler equations that we

solve to generate the updated savings levels are:

u′(ci(yi ,z,W ; W , z)) = βiEz R̂n,m
i (z ′)u′(ĉi+1(W+(z ′), z ′n,m),

where

R̂n,m
i (z ′) =

(
λi
ψ̂p,n
z ′ (ψG ,n,m

z,z ′,W ) + θz ′ + Bψ̂q,n
z ′ (ψG ,n,m

z,z ′,W )− B

ψp,n
z,W

+
(1− λi)
ψq,n
z,W

)

W+(z ′) =

 W+,2(z ′)

...

W+,I

 =


(
λ1

ψ̂p,n

z′ (ψG ,n,m
z,z′,W )+θz ′+Bψ̂q,n

z′ (ψG ,n,m
z,z′,W )−B

ψp,n
z,W

+ (1−λ1)
ψq,n
z,W

)
y1,z,W

...(
λI−1

ψ̂p,n

z′ (ψG ,n,m
z,z′,W )+θz ′+Bψ̂q,n

z′ (ψG ,n,m
z,z′,W )−B

ψp,n
z,W

+ (1−λI−1)

ψq,n
z,W

)
yI−1,z,W
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c1(y1,z ; W , z) = (1− θ)zε1(z)− y1,z,W

for i = 1, ..., I − 1 :

ci(yi ,z ; W , z) = (1− θ)zεi(z) +
(
ψ̂p,n
z,W + θz + B ψ̂q,n

z,W

) Wi∑I
l=2 Wl

− yi ,z,W

for i = 1, ..., I − 2 :

ĉi+1(W+(z ′), z ′n,m) = (1− θ)zεi+1(z ′) + W+,i+1(z ′)− ψ̂y ,n,m
z ′,i+1(W+(z ′))

ĉI (W+(z ′), z ′n,m) = (1− θ)zεI (z ′) + W+,I (z ′).

Note that in the calculation of the ci ’s, we switch from using wealth levels to using wealth

shares to satisfy the requirement that only the latter are truly minimal state variables. This is

another difference relative to the previous use of Smolyak polynomials in Krueger and Kubler

(2004).

With the new savings in hand, we update the savings policies as ψy ,n,m+1
z,i ,W = yi ,z,W . The law

of motion for wealth levels is updated via

ψG ,n,m+1
z,i ,z ′,W =

(
λi
ψ̂p,n
z ′ (ψG ,n,m

z,z ′,W ) + θz ′ + Bψ̂q,n
z ′ (ψG ,n,m

z,z ′,W )− B

ψp,n
z,W

+
(1− λi)
ψq,n
z,W

)
ψy ,n,m+1
i ,z,W .

6 If maxW∈W maxz maxz ′ maxi |ψy ,n,m+1
z,i ,W − ψy ,n,m

z,i ,W | is below an acceptable tolerance level, then

we proceed to step [7]. Otherwise we return to [4] with the updated savings functions and

aggregate law of motion for wealth, but now indexed by step m + 1. We now generate

new Chebyshev coefficients αy ,n,m+1
z,i by solving the system ψ̂y ,n,m+1

z,i (W ) = ψy ,n,m+1
z,i ,W for each

W ∈W.

7 For each point in the grid W and each value z , we check the market clearing conditions. If:

max
W∈W

max
z
|
I−1∑
i=1

ψy ,n,m+1
z,i ,W λi

ψp,n
z,W

− 1|+ |
I−1∑
i=1

ψy ,n,m+1
z,i ,W (1− λi)

ψq,n
z,W

− B |

is below an acceptable tolerance level we stop. Otherwise, we update our guess of prices

ψp,n+1
z,W =

∑I−1
i=1 λiψ

y ,n,m+1
z,i ,W and ψq,n+1

z,W =
∑I−1

i=1(1 − λi)ψ
y ,n,m+1
z,i ,W /B and return to step [3].

We now generate new Chebyshev coefficients (αp,n+1
z,i ,αq,n+1

z,i by solving ψ̂p,n+1
z (W ) = ψp,n+1

z,W

and ψ̂q,n+1
z (W ) = ψq,n+1

z,W for each value of z and each W ∈W.
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B.3 Numerical Accuracy

The analytical results available for the endogenous portfolio economy, for the case when γ = 1 and

the age profile of earnings does not vary with z , provide us with a useful test case to assess the

numerical accuracy of our computational results. We now compare our numerical results with the

theoretical prediction from Proposition 1 in the main text, item by item. We make the following

observations from our simulations:

1 The distribution of wealth shares is constant along the simulation. This is shown for the

computed model in Table A-1.

Table A-1: Wealth Shares With γ = 1

30-39 40-49 50-59 60-69 70-79
Expansion 6.1% 14.2% 25.3% 32.2% 22.3%
Recession 6.1% 14.2% 25.3% 32.2% 22.3%

2 Aggregate wealth is proportional to the aggregate shock. Specifically:

p(z , Ā) + q(z , Ā)B̄ = 0.5501z .

3 The theoretical expressions for stock and bond prices hold with a maximal error of 0.002%

in our simulation.

4 According to the proposition, with γ = 1 portfolio shares λi are age invariant and proportional

to p(z,Ā)
z

. The shares for each generation in the boom and recession states are shown to be

age invariant in Table (A-2). The maximal deviation from the theoretical value is 0.001%.

Table A-2: Portfolio Shares with γ = 1

20-29 30-39 40-49 50-59 60-69
Boom 0.9178 0.9178 0.9178 0.9178 0.9178

Recession 0.9178 0.9178 0.9178 0.9178 0.9178

5 Consumption profiles normalized by total output z (that is, consumption shares) are displayed

in the first two columns of Table A-3. Note that they are independent of z , as the propo-

sition indicates. They are also equal to the theoretical consumption shares characterized by

Proposition 1 and displayed in the last column of Table A-3.
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Table A-3: Consumption as Fraction of Output

Age Group Expansion Recession Theory
20-29 5.33% 5.33% 5.33%
30-39 8.92% 8.92% 8.92%
40-49 12.51% 12.51% 12.51%
50-59 20.55% 20.55% 20.55%
60-69 27.96% 27.96% 27.96%
70+ 24.74% 24.74% 24.74%

6 The equity premium in theory is 0.6642% and the simulated equity premium is 0.6634%.

C Asset Prices in the Representative Agent Economy

Suppose the representative agent invests an exogenous fraction λ of savings in stocks and fraction

1−λ in bonds. Let c(z , a) and y(z , a) denote optimal consumption and savings as functions of the

aggregate shock z and individual start-of-period wealth a, and let p(z) and q(z) be the equilibrium

prices for stocks and bonds. Note that there is no need to keep track of aggregate wealth as a

state: by assumption, the supply of capital is constant and equal to one. Thus, prices can only

depend on z .

The dynamic programming problem for a household is

v(z , a) = max
c≥0,y

{
u(c) + β

∑
z ′∈Z

Γz,z ′ v (z ′, a′))

}

subject to

c + y = (1− θ)z + (p(z) + d(z) + B) a

and the law of motion

a′ [p(z ′) + d(z ′) + B] =

(
λ [p(z ′) + d(z ′)]

p(z)
+

(1− λ)

q(z)

)
y .

The solution to this problem yields decision rules c(z , a), y(z , a) and a′(z ′, y(z , a)) is the associated

value for next period wealth.

10



Given the preferences and technology described above, the market clearing conditions are simply

λy(z , 1) = p(z),

(1− λ)y(z , 1) = q(z)B ,

c(z , 1) = z .

The individual and aggregate consistency condition is

a′(z ′, y(z , 1)) = 1.

Now suppose the process for z is a two-state Markov chain. There are just two equity prices to

solve for: p(z) ∈ {p(zl), p(zh)} . The two market clearing conditions for stocks and bonds imply a

parametric relationship between q(z) and p(z) :

q(z) =
p(z)(1− λ)

λB
.

Thus, stock and bond prices must be equally sensitive to aggregate shocks. The realized gross real

return to saving is given by

λ
[p(z ′) + d(z ′)]

p(z)
+ (1− λ)

1

q(z)
=

p(z ′) + λθz ′

p(z)
,

where the second equality follows from substituting in d(z ′) = θz ′+q(z ′)B−B and the expression

for q(z), as a function of p(z). Thus, the equilibrium equity prices are defined by the solutions to

the two intertemporal first-order conditions:

p(zh)u′(c(zh, 1)) = β
∑
z ′∈Z

Γzh,z ′ [u
′(c(z ′, 1)) [λθz ′ + p(z ′)]] ,

p(zl)u′(c(zl , 1)) = β
∑
z ′∈Z

Γzl ,z ′ [u(c(z ′, 1)) [λθz ′ + p(z ′)]] ,

which, using the market clearing condition for consumption and the CRRA preference specification,

can be written as

p(zh)z−γh = βΓh z−γh [λθzh + p(zh)] + β(1− Γh)z−γl [λθzl + p(zl)] ,

p(zl)z−γl = βΓl z−γl [λθzl + p(zl)] + β(1− Γl)z−γh [λθzh + p(zh)] ,

11



where Γh = Γzh,zh and Γl = Γzl ,zl . From the second pricing equation,

p(zh) =
βΓhλθzh + β(1− Γh)

z−γ
l

z−γ
h

(λθzl + p(zl))

(1− βΓh)
.

Substituting this into the first pricing equation,

p(zl) =

βΓl z−γl λθzl + β(1− Γl)z−γh

λθzh +
βΓhλθzh+β(1−Γh)

z
−γ
l

z
−γ
h

λθzl

(1−βΓh)


z−γl

(
(1−β)(1+β(1−Γh−Γl ))

(1−βΓh)

) .

Since the expression for p(zh) is symmetric, we can take the ratio to express the ratio of prices

across states as a function of fundamentals:

p(zl)

p(zh)
=

zl
zh

(
(1− Γl) z1−γ

h zγ−1
l + (β + Γl − βΓh − βΓl)

(1− Γh) z1−γ
l zγ−1

h + (β + Γh − βΓh − βΓl)

)
.

Note that λ and θ have dropped out here: the ratio of stock prices across states does not depend

on either λ or θ, though the levels of prices do. If aggregate shocks are iid , then 1− Γl = Γh and

the expression above simplifies to

p(zl)

p(zh)
=

(
zl
zh

)γ
.

It is straightforward to verify that the same result is obtained even without the iid assumption in

two special cases: γ = 1 or β = 1.

D Economy with Logarithmic Utility

If the economy is populated with households with logarithmic utility that have life cycle endowment

profiles that do not depend on the aggregate shock, then we can solve for a recursive competitive

equilibrium in closed form.

Proposition 3. Assume (i) the period utility function is logarithmic (γ = 1), and (ii) relative

earnings across age groups are independent of the aggregate state, εi(z) = εi ∀z .Then there

exists a recursive competitive equilibrium in the economy with endogenous portfolio choice with

the following properties:
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1. The distribution of wealth A is constant over time. Denote this distribution A = (A1, ... , AI ).

Then

Gi+1(z , A, z ′) = a′i(z , A, Ai , z ′) = Ai+1 ∀z , z ′, ∀i = 1, ..., I − 1.

2. Aggregate wealth is proportional to the aggregate shock:

p(z , A) + q(z , A)B = Ψz ∀z ,

where Ψ is a constant that does not depend on the value for B.

3. Stock and bond prices are given by

p(z , A) = p(z) = Ψz − B
z

R

∑
z ′∈Z

Γz,z ′
1

z ′

q(z , A) = q(z) =
z

R

∑
z ′∈Z

Γz,z ′
1

z ′
∀z ,

where R = (Ψ + θ)/Ψ is the nonstochastic steady state gross interest rate.

4. Asset portfolios are identical across age groups:

λi(z , A, Ai) = λ(z) =
p(z)

Ψz
∀z , ∀i = 1, ..., I − 1.

5. Consumption and savings at each age are proportional to the aggregate shock:

ci(z , A, Ai) =
[
(1− θ)εi + θAi +

(
Ai − Ai+1

)
Ψ
]

z ,

yi(z , A, Ai) = Ai+1Ψz ∀z , ∀i = 1, ..., I − 1.

6. The equity premium is given by

∑
z

Πz

{∑
z ′

Γz,z ′
[p(z ′) + d(z ′)]

p(z)
− 1

q(z)

}
= R

∑
z

Πz

z


∑
z ′∈Z

Γz,z ′z
′ −
(∑

z ′∈Z
Γz,z ′

1
z ′

)−1

1− B
RΨ

∑
z ′∈Z

Γz,z ′
1
z ′


where Πz denotes the unconditional probability distribution over z .
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Corollary 4. If z is iid over time, then stock and bond prices are proportional to the aggregate

shock and the average equity premium is given by R

(∑
z

Πz

z

∑
z

Πzz − 1

)
/

(
1− B

RΨ

∑
z

Πz

z

)
.

Corollary 5. In the limit as Γz,z → 1 ∀z (perfectly persistent shocks), q(z) → R−1 and p(z) →
Ψz − BR−1.

We will verify that the conjectured expressions for prices and allocations satisfy households’

budget constraints, households’ intertemporal first-order conditions, and all the market clearing

conditions.

1. Market Clearing Recall that
I∑

i=1

εi = 1, A1 = 0 and
I∑

i=1

Ai = 1. It is then straightforward

to verify that the expressions in Proposition 1 for λi(z), ci(z , A, Ai), and yi(z , A, Ai) satisfy

the market clearing conditions for goods, stocks, and bonds.

2. Budget Constraints Given identical portfolios across age groups, all households earn the

return to saving. Substituting in the candidate expressions for prices (Property 3) and

portfolio shares (Property 4), the gross return to saving conditional on productivity being

z−1 in the previous period and z in the current period is

λ(z−1) [p(z) + d(z)]

p(z−1)
+

1− λ(z−1)

q(z−1)
=

p(z) + d(z)

z−1Ψ
+

z−1Ψ− p(z−1)

z−1Ψq(z−1)

=
p(z) + d(z)

z−1Ψ
+

B

z−1Ψ

=
z (Ψ + θ)

z−1Ψ
.

Given this expression for returns, consumption for a household of age i is

ci(z , A, Ai) = (1− θ)εiz + yi−1(z−1, A, Ai)
z (Ψ + θ)

z−1Ψ
− yi(z , A, Ai).

Substituting in the candidate expression for yi(z , A, Ai) gives

ci(z , A, Ai) = z
[
(1− θ)εi + θAi +

(
Ai − Ai+1

)
Ψ
]

,

which is the conjectured expression for equilibrium consumption (Property 5). Thus, the

conjectured allocations satisfy households’ budget constraints.
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3. Optimal Savings and Portfolio Choices It remains to verify that agents’ intertemporal

first-order conditions with respect to stocks and bonds are satisfied. For bonds we have

q(z)

ci(z , A, Ai)
= βi+1

∑
z ′∈Z

Γz,z ′
1

ci+1(z ′, A, Ai+1)
∀i = 1, ..., I − 1.

Substituting in the expression for consumption,

q(z) = κi+1(A)
∑
z ′∈Z

Γz,z ′
z

z ′
∀i = 1, ..., I − 1, (A-15)

where

κi+1(A) = βi+1

(1− θ)εi + θAi +
(
Ai − Ai+1

)
Ψ

(1− θ)εi+1 + θAi+1 +
(
Ai+1 − Ai+2

)
Ψ

.

For stocks, we have

p(z) = κi+1(A)
∑
z ′∈Z

Γz,z ′
z

z ′
(p(z ′) + θz ′ + q(z ′)B − B) (A-16)

= κi+1(A)
∑
z ′∈Z

Γz,z ′z

(
Ψ + θ − B

z ′

)
∀i = 1, ..., I − 1.

Adding the two first-order conditions for stocks and bonds gives

p(z) + q(z)B = zΨ = κi+1(A)
∑
z ′∈Z

Γz,z ′

[
z

(
Ψ + θ − B

z ′

)
+

z

z ′
B

]
(A-17)

= κi+1(A)z (Ψ + θ) ∀i = 1, ..., I − 1.

This equation is satisfied as long as

κi+1(A) =
Ψ

Ψ + θ
=

1

R
∀i = 1, ..., I − 1

Given this expression for κi+1(A), it is immediate that the expressions for asset prices (Prop-

erty 3) satisfy the households’ first-order conditions for stocks and bonds (equations A-15
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and A-16):

p(z , A) = p(z) = zΨ− B
z

R

∑
z ′∈Z

Γz,z ′
1

z ′
,

q(z , A) = q(z) =
z

R

∑
z ′∈Z

Γz,z ′
1

z ′
∀z .

4. Equity Premium We can derive a near-closed-form expression for the equity premium

(up to the endogenous value for wealth Ψ). Let Πz denote the unconditional probability of

aggregate productivity being z . The average equity premium is defined as

∑
z

Πz

{∑
z ′

Γz,z ′

[
p(z ′) + d(z ′)

p(z)

]
− 1

q(z)

}

=
∑
z

Πz

{∑
z ′

Γz,z ′

[
p(z ′) + θz ′ + q(z ′)B − B

p(z)

]
− 1

q(z)

}

=
∑
z

Πz

p(z)

{∑
z ′

Γz,z ′ [z
′ (Ψ + θ)]− B −

∑
z ′∈Z Γz,z ′z

(
Ψ + θ − B

z ′

)∑
z ′∈Z Γz,z ′

z
z ′

}

= (Ψ + θ)
∑
z

Πz

p(z)

{∑
z ′

Γz,z ′z
′ − 1∑

z ′∈Z Γz,z ′
1
z ′

}

= R
∑
z

Πz

z



(∑
z ′∈Z

Γz,z ′z
′ −
(∑

z ′∈Z
Γz,z ′

1
z ′

)−1
)

(
1− B

RΨ

∑
z ′∈Z

Γz,z ′
1
z ′

)


, where R = (Ψ+θ)
Ψ

. If z is iid so that Γz,z ′ is equal to the unconditional probability Πz ′ , this

simplifies to

∑
z

Πz

{∑
z ′

Πz ′

[
p(z ′) + d(z ′)

p(z)

]
− 1

q(z)

}
= R

(∑
z

Πz

z

∑
z

Πzz − 1

)
(

1− B
RΨ

∑
z

Πz

z

) .

5. Solving for Ψ and A Equations (A-17) are the first-order conditions for pricing claims

to capital for a nonstochastic life-cycle economy, in which the constant asset price is Ψ and

the constant asset income is θ. The I − 1 equations (A-17) combined with A1 = 0 and
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the market clearing condition
I∑

i=1

Ai = 1 can be used to solve numerically for
{

Ai

}I
i=1

and

Ψ. This system of equations is the one used to calibrate the nonstochastic version of our

model economy. There we set θ to replicate a target interest rate R = (Ψ + θ) /Ψ, and

we set the life-cycle profile {βi}Ii=2 to replicate the empirical distribution for wealth by age,

which determines both the aggregate start-of-period wealth (Ψ + θ) and its age distribution{
Ai

}I
i=1

.

E Asset Prices in the Two-Period Overlapping-Generations Economy

In this appendix we study the simplest OLG framework in which households live for only two periods:

I = 2. We use this example to discuss how the curvature parameter γ affects the elasticity ξ of

price changes to output changes in OLG economies. To make that discussion most transparent, we

focus on an economy with only the risky stock (B = 0 and λi ≡ 0) and assume that households

only earn labor income in the first period of life: ε1 = 1 and ε2 = 0. Since young households

start with zero assets, all wealth is therefore held by old agents. As a consequence, the wealth

distribution is degenerate (and time invariant) in this economy. As in the representative agent

model, the only state variable is the exogenous shock z ∈ {zl , zh}.

Consumption of young and old households is given by

c1(z) = (1− θ)z − p(z)

c2(z) = θz + p(z),

and the stock market price is determined by the intertemporal Euler equation

p(z) [(1− θ)z − p(z)]−γ = β
∑

z ′∈{zL,zh}

Γz,z ′ [θz ′ + p(z ′)]
−γ

[θz ′ + p(z ′)] . (A-18)

No closed-form solution is available for the functional equation p(z) that solves equation (A− 18)

outside of the special cases γ = 0 and γ = 1. However, taking a first order approximation of the

Euler equation around the point zl/zh = 1 we can show
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Proposition 6. To a first order approximation

ξ2p ≈ γ(1− θ)

1− θ (R−γ)
(R−1)

= ξRA × 1− θ
1− θ (R−γ)

(R−1)

,

where R = θ+p
p
> 1 is the steady state gross return on the stock.54

We prove this proposition in section below. Note first that for γ = 1, this formula is exact

(as shown in the previous section) and delivers ξ2p = ξRA = 1: prices fall by exactly as much

as output in a downturn. Second, ξ2p is increasing in γ, and thus for γ > 1 we have ξ2p > 1.

Third, ξ2p < ξRA. Thus, as long as the intertemporal elasticity of substitution 1/γ is smaller than

one, asset prices fall by more than output in a recession, but by less than in the corresponding

representative agent economy with infinitely lived households.

The reason is as follows. Consumption of the current old generation must decline in the

recession since the price of the asset, the only source for old-age consumption, is lower in the bad

than in the good aggregate state of the world. Moreover, for γ > 1, consumption of the old is

more sensitive to aggregate shocks than consumption of the young:

c1(zh)

c1(zl)
<

zh
zl
<

c2(zh)

c2(zl)
.

The second inequality reflects the fact that c2(zh)/c2(zl) = ph/pl > zh/zl (since ξ2p > 1), while

the first inequality follows from market clearing: (c1(zh) + c2(zh)) / (c1(zl) + c2(zl)) = zh/zl . The

fact that aggregate risk is disproportionately borne by the old explains why stock prices are less

volatile in this economy than in the analogous representative agent economy. Recall that stocks

are effectively priced by younger agents, because the supply of stocks by the old is inelastic at

any positive price. Because the old bear a disproportionate share of aggregate risk, the young’s

consumption fluctuates less than output. Thus, smaller price changes (relative to the representative

agent economy) are required to induce them to purchase the aggregate supply of equity at each

date.

One might wonder whether it is possible that c1(zh) < c1(zl), so that newborn households

would potentially prefer to enter the economy during a recession rather than during a boom. The

54For θ such that R = β−1, the expression simplifies to ξ2p ≈ γ(β+1)
γβ+1 .
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answer turns out to be no: while stock prices fall by more than output in the event of a recession,

they never fall by enough to compensate the young for their decline in labor earnings. The logic

for this result is straightforward. In a two-period OLG economy, stock prices are defined by the

inter-temporal first-order condition for young households (equation A-18). With iid shocks, the

right-hand side of this condition is independent of the current value for z . Taking the ratio of the

two pricing equations across states, the ratio of stock prices across states is given by

ph

pl
=

(
c1(zh)

c1(zl)

)γ
.

The advantage to the young from entering the economy during a recession is that they buy stocks

cheaply, ph/pl > 1. But the optimality restriction above then implies that c1(zh)/c1(zl) > 1, so

the young must suffer low consumption if they enter during a recession. Intuitively, low prices are

needed to induce the young to buy stocks when the marginal utility of current consumption is high.

But a high marginal utility of consumption requires low consumption for these households.

This example reveals that for the young to potentially gain from a recession, we need people

to live for at least three periods, while the previous example with logarithmic preferences indicates

that we also require γ > 1. That is why, in the main text, we focus on the 3 period version of the

model in which both desired results can emerge simultaneously.

E.1 Proof of Proposition 6

Let p̃ = p(zh)
p(zl )

, z̃ = zh
zl

, and x̃ = zl
pl

. In terms of these variables, the intertemporal first-order

conditions, conditional on the current state being zl and zh are, respectively,

((1− θ)x̃ − 1)−γ = βΓzl ,zl (θx̃ + 1)1−γ + βΓzl ,zh (θz̃ x̃ + p̃)1−γ

p̃ ((1− θ)z̃ x̃ − p̃)−γ = βΓzh,zl (θx̃ + 1)1−γ + βΓzh,zh (θz̃ x̃ + p̃)1−γ .

Our goal is to solve for p̃ as a function of z̃ . However, except for the special case γ = 1, this

system of equations cannot be solved in closed form. So instead we will linearize these equations

and look for an approximate solution for relative prices as a linear function of relative productivity.

We proceed as follows:

1. Take first-order Taylor-series approximations to these two first-order conditions around the

nonstochastic steady state values for p̃, z̃ , and x̃ , which we denote P , Z , and X (where
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Z = P = 1). This gives a system of two equations in three first-order terms (x̃ − X ) ,

(z̃ − Z ), and (p̃ − P) :

(
A11 A12 A13

A21 A22 A23

) (x̃ − X )

(z̃ − Z )

(p̃ − P)

 =

(
0

0

)
, (A-19)

where

A11 = −γ ((1− θ)X − 1)−γ−1 (1− θ)−(
(1− γ) βΓzl ,zl (θX + 1)−γ θ + (1− γ) βΓzl ,zh (θX + 1)−γ θ

)
A12 = − (1− γ) βΓzl ,zh (θX + 1)−γ θX

A13 = − (1− γ) βΓzl ,zh (θX + 1)−γ

A21 = −γ ((1− θ)X − 1)−γ−1 (1− θ)−(
(1− γ) βΓzh,zl (θX + 1)−γ θ + (1− γ) βΓzh,zh (θX + 1)−γ θ

)
A22 = −γ ((1− θ)X − 1)−γ−1 (1− θ)X − (1− γ) βΓzh,zh (θX + 1)−γ θX

A23 = γ ((1− θ)X − 1)−γ−1 + ((1− θ)X − P)−γ − (1− γ) βΓzH ,zH (θX + 1)−γ .

2. Use the first equation in A-19 to solve for (x̃ − X ) as a linear function of (z̃ − Z ) and

(p̃ − P) :

(x̃ − X ) = −A12

A11
(z̃ − Z )− A13

A11
(p̃ − P) .

Then substitute this solution into the second equation in (A-19), and solve for (p̃ − P) as a

function of (z̃ − Z ) :

(p̃ − P) = −A21

A23
(x̃ − X )− A22

A23
(z̃ − Z )

= −A21

A23

(
−A12

A11
(z̃ − Z )− A13

A11
(p̃ − P)

)
− A22

A23
(z̃ − Z ) .

Thus,

ξ2p ≈ p̃ − P

z̃ − Z
=

A21A12 − A22A11

A23A11 − A21A13
.
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3. Now assume productivity shocks are iid, so that Γzl ,zh = Γzh,zh = Γzh and Γzl ,zl = Γzh,zl =

1− Γzh . Under this iid assumption, A11 = A21 and thus

ξ2p ≈ A21A12 − A22A21

A23A11 − A21A13
=

A12 − A22

A23 − A13
= X

γ(1− θ)

((X − Xθ − 1) + γ)

Recall that X is the inverse of the steady state stock price, so we can equivalently write this

elasticity in terms of the steady state gross interest rate R , where R = θX + 1:

ξ2p ≈ γ(1− θ)

1− θ (R−γ)
(R−1)

. (A-20)

This is the expression given in the text. Note that for γ = 1, ξ2p = 1.

4. We want to show that 1 < ξ2p < ξRA for γ > 1. First, note that in any equilibrium, a

positive stock price implies R > 1. Then

1

ξ2p
=

1− θ (R−γ)
(R−1)

γ(1− θ)
=

1

γ

(
1 +

(γ − 1) θ
R−1

(1− θ)

)
>

1

γ
=

1

ξRA
.

Thus, ξ2p < ξRA.

Given that ξ2p = 1 when γ = 1, showing that ξ2p is strictly increasing in γ is sufficient to

prove that ξ2p > 1:

∂

∂γ

(
γ(1− θ)

1− θ (R−γ)
(R−1)

)
= (θ − 1) (R − 1)

Rθ − R + 1

(R − Rθ + θγ − 1)2

It follows that ξ2p is strictly increasing in γ if and only if R > 1
1−θ . But in any equilibrium,

positive consumption for the young requires exactly this condition:

(1− θ)− θ

R − 1
> 0⇔ R >

1

1− θ
.

We conclude that ξ2p > 1.

5. In the special case in which θ is such that R = 1
β

, the expression for ξ2p simplifies further. The

steady state value for R is an endogenous variable and has to satisfy the steady state version
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of the intertemporal first-order condition, where the steady state stock price is θ/(R − 1) :

θ

R − 1

(
(1− θ)− θ

R − 1

)−γ
= β

(
θ +

θ

R − 1

)−γ (
θ +

θ

R − 1

)
. (A-21)

When β = 1
R

, equation (A-21) can be solved in closed form to give R = 1
1−2θ

. Thus, we

have R = 1
β

= 1
1−2θ

, which implies θ = 1
2
(1− β). Substituting R = 1

β
and θ = 1

2
(1− β) into

equation (A-20) gives

ξ2p ≈ γ(1− θ)

1− θ (R−γ)
(R−1)

=
γ(β + 1)

γβ + 1
,

F Derivations for the 3-Period Economy

In this appendix we provide details of the analysis of the three period model, first for the case

where aggregate productivity z follows as stationary Markov process in levels (studied in section

4 of the paper), and then for the case of stochastic growth rates of z (as investigated in section

7.1).

F.1 Details of the 3-Period Economy with Stationary Productivity

As discussed in the main text, the two functional equations fully characterizing the recursive

equilibrium in the 3-period OLG economy are given by the intertemporal Euler equation

u′ [(1− A) (p(z , A) + θz)− G (z , A)p(z , A)] = β
∑
z ′

Γz,z ′
[p(z ′, A′) + θz ′]

p(z , A)
u′ [G (z , A) (p(z ′, A′) + θz ′)]

(A-22)

and the (rewritten) asset market clearing condition that the labor income of the young equals that

cohort’s purchases of shares in the risky asset:

[1− G (z , A)] p(z , A) = (1− θ)z . (A-23)

These two equations determine the equilibrium price p(z , A) of the risky asset and the law of

motion of the wealth distribution A′ = G (z , A). The young do not consume by assumption, and

22



consumption of the middle-aged and old are given by

c3(z , A) = A [p(z , A) + θz ] (A-24)

c2(z , A) = (1− A) [p(z , S) + θz ]− G (z , A)p(z , A) (A-25)

and expected lifetime utility is therefore determined as

v3(z , A) = u [c3(z , A)] (A-26)

v2(z , A) = u [c2(z , A)] + β
∑
z ′

Γz,z ′ u[c3(z ′, G (z , A))] (A-27)

v1(z , A) = β
∑
z ′

Γz,z ′ v2 [z ′, G (z , A)] . (A-28)

The welfare losses or gains from a great recession for the young are therefore derived from comparing

v1(zn, A) and v1(zr , A), and the magnitude of the relative asset price decline is measured as the

percentage decline in the price of the risky asset, relative to that of output:

ξ(A) =
log(p(zr , A)/p(zn, A))

log(zr/zn)

F.2 Details of the 3-Period Economy with Stochastic Growth Rates

In the model with stochastic growth rate, assume that the growth rate (between today and next

period) of aggregate productivity

g ′ =
z ′

z

follows a finite state Markov chain with state space G and transition matrix Γg ,g ′ . Now the state

space of the economy consists of the current growth rate g and again the wealth distribution,

represented by the share of wealth (risky assets) of the old A coming into the period. To compute

the model it is easier to work with variables that are deflated by current productivity z . Therefore
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define

p̃(g , A) =
p(z , A)

z

c̃m(g , A) =
cm(z , A)

z

c̃o(g , A) =
co(z , A)

z

As before, the Euler equation can now be written as

[(1− A) (p(z , A) + θz)− G (z , A)p(z , A)]−γ = β
∑
z ′

Γz,z ′
[p(z ′, A′) + θz ′]

p(z , A)
[G (z , A) (p(z ′, A′) + θz ′)]

−γ

and dividing by z−γ yields

[
(1− A)

(
p(z , A)

z
+ θ

)
− G (z , A)

p(z , A)

z

]−γ
= β

∑
z ′

Γz,z ′

(
z ′

z

)1−γ
[p(z ′, A′)/z ′ + θ]

p(z , A)/z

[
G (z , A)

(
p(z ′, A′)

z ′
+ θ

)]−γ
In terms of the deflated price, and now making the switch in the state variable from z to g , this

yields the Euler equation

[(1− A) (p̃(g , A) + θ)− G (g , A)p̃(g , A)]−γ = β
∑
g ′

Γg ,g ′ (g ′)
1−γ [p̃(g ′, A′) + θ]

p̃(g , A)
[G (g , A) (p̃(g ′, A′) + θ)]

−γ

or

1 = β
∑
g ′

Γg ,g ′ (g ′)
1−γ [p̃(g ′, A′) + θ]

p̃(g , A)

[
G (g , A) (p̃(g ′, A′) + θ)

(1− A) (p̃(g , A) + θ)− G (g , A)p̃(g , A)

]−γ

The previous asset market clearing condition (A− 23) now reads as

[1− G (g , A)]p̃(g , A) = (1− θ),

and thus again we have two functional equations which determine the equilibrium price function

p̃(g , A) and law of motion for wealth G (g , A).
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G Empirical Asset Price Movements and Long-Run Return Statistics

In the next table we summarize the evolution of asset prices, over the last decade, for the broad

asset classes used in the empirical analysis in Section 2.

Next we document in greater detail the empirical asset return statistics for stocks and bonds,

over 10 year time intervals. As described in the main text, the Shiller data provide annual real

returns on stocks and bonds from 1871 to 2014. From these annual gross real returns we can

construct 10 year returns, for an arbitrary 10 year interval, by taking the product of 10 contiguous

one year gross real returns. If we insist on non-overlapping 10 year time intervals, there are 5

different ways to construct our sample of 14 observations, starting in 1871 and ending in 2010,

starting in 1872 and ending in 2011 and so forth. The following table reports the range of the

mean and standard deviation of stock and bond returns, as well as their correlation, across these

five different samples. We also calculate the same statistics based on a sample of yearly (and thus

overlapping) 10 year returns, where the first observation uses annual return data from 1871 to

1880, the second observation data from 1872 to 1881 and so forth.

Finally, once we have constructed samples of 10 year gross returns R , we compute means and

standard deviations based on the log of gross real returns ln(R), as is common in the literature

(see e.g. Campbell, ) where we note that

ln(Rt,t+10) =
t+9∑
τ=t

ln(Rτ ,τ+1) =
t+9∑
τ=t

rτ ,τ+1

where rτ ,τ+1 = ln(Rτ ,τ+1) is the annual net real return. In order to make the mean returns easier to

interpret we annualize it through the transformation exp (E [ln R])
1

10 and express it in percentage

terms. In the main text we report statistics based on the 1974-2014 sample (the middle columns

in table A12. As discussed in the main text, the range of possible empirical return statistics we

could have reported is quite narrow for average returns and bond return volatility, slightly wider

for stock return volatility and appreciably larger for the correlation between 10 year real stock and

bond returns (which is why we do not emphasize that statistic in our discussion of the model-based

results).
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Table A-4: Real Price Declines Relative to 2007:2 by Risky Asset Class

S
to

cks: W
ilshire 5000

R
es. R

eal E
state: C

ase S
hiller

N
oncorp B

us.: F
low

 of F
unds

N
onres. P

roperty: M
oody's

N
et W

orth

T
rend N

et W
orth

N
et W

orth - T
rend N

et W
orth

to 2008:1 ‐11.28 ‐8.07 ‐5.46 1.30 ‐7.77 1.50 ‐9.13

to 2008:2 ‐9.79 ‐9.79 ‐9.77 ‐2.06 ‐8.78 2.00 ‐10.57

to 2008:3 ‐17.72 ‐12.00 ‐11.42 ‐8.31 ‐12.64 2.51 ‐14.78

to 2008:4 ‐41.10 ‐16.48 ‐15.66 ‐15.47 ‐22.61 3.01 ‐24.87

to 2009:1 ‐47.66 ‐21.00 ‐20.18 ‐23.76 ‐27.59 3.53 ‐30.05

to 2009:2 ‐41.61 ‐20.62 ‐24.91 ‐31.86 ‐26.46 4.04 ‐29.32

to 2009:3 ‐34.45 ‐19.53 ‐28.23 ‐36.88 ‐24.37 4.56 ‐27.66

to 2009:4 ‐28.50 ‐21.16 ‐28.23 ‐39.10 ‐23.39 5.08 ‐27.09

to 2010:1 ‐25.96 ‐23.48 ‐28.49 ‐39.34 ‐23.72 5.60 ‐27.76

to 2010:2 ‐25.11 ‐22.35 ‐26.46 ‐38.05 ‐22.59 6.12 ‐27.05

to 2010:3 ‐28.17 ‐22.98 ‐25.76 ‐36.57 ‐23.63 6.65 ‐28.39

to 2010:4 ‐20.91 ‐25.63 ‐24.66 ‐35.33 ‐22.46 7.18 ‐27.65

to 2011:1 ‐14.54 ‐27.86 ‐23.71 ‐34.23 ‐21.38 7.71 ‐27.01

to 2011:2 ‐14.02 ‐27.16 ‐24.25 ‐33.40 ‐20.90 8.24 ‐26.92

to 2011:3 ‐20.95 ‐27.15 ‐23.80 ‐32.34 ‐22.86 8.78 ‐29.09

to 2011:4 ‐21.47 ‐29.66 ‐22.07 ‐31.36 ‐23.91 9.32 ‐30.39

to 2012:1 ‐13.73 ‐31.08 ‐21.68 ‐30.63 ‐22.12 9.86 ‐29.11

to 2012:2 ‐14.39 ‐28.20 ‐20.53 ‐29.22 ‐20.73 10.41 ‐28.21

to 2012:3 ‐11.89 ‐26.83 ‐18.04 ‐28.59 ‐18.95 10.96 ‐26.96

to 2012:4 ‐11.07 ‐27.35 ‐16.44 ‐27.21 ‐18.66 11.51 ‐27.05

to 2013:1 ‐4.83 ‐26.68 ‐14.94 ‐25.47 ‐16.16 12.06 ‐25.18

to 2013:2 0.70 ‐22.89 ‐12.29 ‐22.13 ‐12.21 12.62 ‐22.04

to 2013:3 4.81 ‐20.58 ‐9.52 ‐19.42 ‐9.38 13.18 ‐19.93

to 2013:4 10.35 ‐20.79 ‐7.54 ‐16.87 ‐7.42 13.74 ‐18.60

to 2014:1 14.34 ‐20.71 ‐6.95 ‐14.67 ‐5.98 14.30 ‐17.74

to 2014:2 17.19 ‐18.93 ‐5.80 ‐10.45 ‐3.94 14.87 ‐16.37

to 2014:3 20.98 ‐17.95 ‐4.61 ‐7.82 ‐2.04 15.44 ‐15.14

to 2014:4 22.52 ‐18.26 ‐2.57 ‐4.67 ‐1.30 16.01 ‐14.92

to 2015:1 26.34 ‐18.12 ‐0.62 ‐0.77 0.35 16.59 ‐13.92

to 2015:2 28.19 ‐16.21 ‐0.16 2.40 2.03 17.17 ‐12.92

to 2015:3 23.02 ‐14.98 0.56 4.77 1.26 17.75 ‐14.00

to 2015:4 23.47 ‐14.96 1.70 6.76 1.66 18.33 ‐14.09

avg. (2009:1‐‐2013:4)

‐18.17 ‐24.65 ‐21.09 ‐30.59 ‐20.44 8.56 ‐26.77

The Flow of Funds also reports price changes for directly held corporate equities: this series aligns

closely with the Wilshire 5000 index. The Flow of Funds also reports a price series for residential real

estate, based on the Loan Performance Index from First American Corelogic. This series closely tracks

the Case-Shiller series. The house price series published by OFHEO (based on data from Fannie Mae

and Freddie Mac) shows significantly smaller declines in house values.
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Table A-5: Empirical Return Statistics

Mean Return: 100
[

exp (E [ln R])
1

10 − 1
]

Std.Dev.(ln R)

overlap
1871− 2014

non-overlap
1874− 2014

non-overlap
[min, max ]

overlap
1871− 2014

non-overlap
1874− 2014

non-overlap
[min, max ]

Equity 6.52 6.62 [6.43,6.62] 0.48 0.36 [0.35,0.55]
Bonds 2.36 2.29 [2.29,2.58] 0.31 0.30 [0.30,0.36]

Corr. 0.33 0.01 [0.01,0.52]

Table A-6: Wealth-Based Welfare Losses (%)

Portfolio & Earnings Model
Endogenous Port. Exogenous Port.

Age Group Asym. Sym. Asym. Sym.
20-29 -1.98 0.60 -3.90 -2.98
30-39 -11.20 -11.87 -6.30 -5.34
40-49 -15.79 -16.38 -6.83 -7.29
50-59 -22.83 -23.31 -20.39 -18.86
60-69 -25.90 -26.24 -35.77 -36.78
70+ -14.95 -15.08 -19.11 -20.90

H Wealth-Based Welfare Measures

I Welfare with Fixed Prices

In this appendix we provide the details of our calculations for the partial equilibrium thought

experiments in section 6.5 of the main text.

I.1 No Asset Price Recession

In the first scenario, there is a recession at 0 but nothing happens to asset prices. So in the

recession period, the wealth distribution is again A−1 and aggregate start of period wealth is

W−1 = p(zH , A−1) + θzH + q(zH , A−1)B

Thus, the age distribution of start of period wealth in the recession period is exactly what it would

have been given no recession in the general equilibrium model.
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Now, starting with their age-specific wealth, Ai
−1W−1, agents at each age maximize expected

lifetime utility looking forward, taking as given the stochastic process for z with the corresponding

implications for their earnings. They believe that at each date and in each state, one period ahead

gross returns will be R , where R is defined below.

We compare welfare conditional on a recession at date 0 to welfare without a recession at date

0. When there is no recession at date, households also have start of period wealth Ai
−1W−1, but

they have higher labor earnings (and a different probability distribution over future earnings). They

take as given the same gross returns R looking forward.

The date 0 constraints for an agent of age i with (without) a recession are

ci + yi = εi(zR)(1− θ)zR + Ai
−1W−1

ci + yi = εi(zR)(1− θ)zH + Ai
−1W−1

where yi is savings. We will later assume savings are divided between z ′−contingent Arrow secu-

rities, and that the cost of buying one of each of these securities (thereby delivering one unit of

consumption tomorrow) is 1/R .

I.2 Permanent Asset Price Recession

In the second scenario, the distribution of start of period wealth in the recession moves just as it

does in the baseline general equilibrium model. Call this recession distribution, AR , where AR is

the distribution of start of period wealth conditional on a long period of normal times prior to date

0, followed by a recession at date zero. Aggregate start of period wealth is

WR = p(zR , AR) + θzR + q(zR , AR)B

Thus, the age distribution of start of period wealth in the recession period is exactly what it would

have been given a recession in the general equilibrium model.

Now, starting with their age-specific wealth, Ai
RWR , agents at each age maximize expected

lifetime utility looking forward, taking as given the stochastic process for z with the corresponding

implications for their earnings. They believe that at each date and in each state, one period ahead

returns will be R (as in the other scenario).
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The date 0 constraints for an agent of age i with (without) a recession are

ci + yi = εi(zR)(1− θ)zR + Ai
RWR

ci + yi = εi(zH)(1− θ)zH + Ai
−1W−1

I.3 Returns and Risk Sharing

One issue is that if there is no uncertainty about stock or bond returns, and equities offer a return

premium, everyone will want to short bonds, if they are allowed to do so. Thus we need to either

impose exogenous portfolios or assume that both assets must pay the same constant return from

the recession period onward. In either case it seems reasonable to set the return to saving equal

to the aggregate return to assets in the repeated normal state, i.e.,

R =
p(zH , A−1) + d(zH , A−1) + B

p(zH , A−1) + q(zH , A−1)B
.

A second issue is that with constant returns, there is no way to pool aggregate risk. This

introduces an asymmetry relative to the baseline model, which we probably don’t want. Suppose

we introduce Arrow securities, which pay one unit of consumption if a particular aggregate state

is realized, and which are priced at actuarially fair rates, so the price of consumption in z ′ given z

today is

q(z , z ′) =
pr(z ′|z)

R

Thus the price of one unit of consumption for sure is simply

∑
z ′

q(z , z ′) =
1

R

Given these assumptions, the household problem at age i and date 0 given initial productivity
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z0 and initial start of period wealth distribution AiW is

max
{cj (z0+j−i )}

{
u(ci(z0)) +

I∑
j=i+1

(βi × ...× βj−1)
∑
z0+j−i

π0(z0+j−i |z0)u(cj(z0+j−i))

}

subject to

ci(z0) +
I∑

j=i+1

1

R j−i

∑
z0+j−i

π0(z0+j−i |z0)cj(z0+j−i) ≤ LTI iz0

LTI iz0
≡ AiW + εi(z0)(1− θ)z0 +

I∑
j=i+1

1

R j−i

∑
z0+j−i

π0(z0+j−i |z0)εi(z
(
z0+j−i))(1− θ)z

(
z0+j−i)

where z0+j−i is a possible history from date zero to date 0 + j − i , and π0(z0+j−i |z0) is the

corresponding probability conditional on z0 (which matters because shocks are not iid) and where

z
(
z0+j−i) is just the last element of the sequence. Note that I have written the consumption

prices straight into the budget constraint.

The first order conditions are

u′(ci(z0)) = λ

(βi × ...× βj−1) π0(z0+j−i |z0)u′(cj(z0+j−i)) = λ
1

R j−i π0(z0+j−i |z0)

which imply

cj(z0+j−i) =
[
R j−i (βi × ...× βj−1)

] 1
γ ci(z0)

We also have

ci(z0) +
I∑

j=i+1

1

R j−i

∑
z0+j−i

π0(z0+j−i |z0)cj(z0+j−i) = LTI iz0

ci(z0) +
I∑

j=i+1

1

R j−i

∑
z0+j−i

π0(z0+j−i |z0)
[
R j−i (βi × ...× βj−1)

] 1
γ ci(z0) = LTI iz0

ci(z0)

(
1 +

I∑
j=i+1

1

R j−i

∑
z0+j−i

π0(z0+j−i |z0)
[
R j−i (βi × ...× βj−1)

] 1
γ

)
= LTI iz0
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or

ci(z0) = χi
z0

LTI iz0

where

χi
z0

=
1(

1 +
∑I

j=i+1
1

R j−i

∑
z0+j−i π0(z0+j−i |z0) [R j−i (βi × ...× βj−1)]

1
γ

)
But note here that in fact nothing in χi

z0
depends on the history, and the probabilities add to one,

so we can write

χi
z0

= χi =
1

1 +
∑I

j=i+1 (R j−i)
1
γ
−1 (βi × ...× βj−1)

1
γ

I.4 Lifetime Utility and Welfare Calculations

Lifetime utility is

u(ci(z0)) +
I∑

j=i+1

(βi × ...× βj−1)
∑
z0+j−i

π0(z0+j−i |z0)u(cj(z0+j−i))

= u(ci(z0)) +
I∑

j=i+1

(βi × ...× βj−1)
∑
z0+j−i

π0(z0+j−i |z0)u
([

R j−i (βi × ...× βj−1)
] 1

γ ci(z0)
)

=

(
1 +

I∑
j=i+1

(βi × ...× βj−1)
∑
z0+j−i

π0(z0+j−i |z0)
([

R j−i (βi × ...× βj−1)
] 1

γ

)1−γ
) (

χiLTI iz0

)1−γ

1− γ

=

(
1 +

I∑
j=i+1

(βi × ...× βj−1)
[(

R j−i) 1−γ
γ (βi × ...× βj−1)

1−γ
γ

]) (χiLTI iz0

)1−γ

1− γ

Note that lifetime utility depends on the initial state z0 and the initial start of period wealth

distribution AiW only through the term LTI iz0
.
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What is the welfare cost of entering in a recession? Define it as the solution ω to(
1 +

I∑
j=i+1

(βi × ...× βj−1)
[(

R j−i) 1−γ
γ (βi × ...× βj−1)

1−γ
γ

]) (χiLTI izH
)1−γ

1− γ
(1 + ω)1−γ

=

(
1 +

I∑
j=i+1

(βi × ...× βj−1)
[(

R j−i) 1−γ
γ (βi × ...× βj−1)

1−γ
γ

]) (χiLTI izL
)1−γ

1− γ

or

(
LTI izH

)1−γ
(1 + ω)1−γ =

(
LTI izL

)1−γ

log
(
LTI izH

)
+ log (1 + ω) = log

(
LTI izL

)
ω ≈ log

(
LTI izL
LTI izH

)

This entity is straightforward to calculate. In particular, for scenario 1 (no asset price recession)

the calculation is

ω1 ≈ log

(
Ai
−1W−1 + εi(zL)(1− θ)zL +

∑I
j=i+1

1
R j−i

∑
z0+j−i π0(z0+j−i |zL)εi(z

(
z0+j−i))(1− θ)z

(
z0+j−i)

Ai
−1W−1 + εi(zH)(1− θ)zH +

∑I
j=i+1

1
R j−i

∑
z0+j−i π0(z0+j−i |zH)εi(z (z0+j−i))(1− θ)z (z0+j−i)

)

For scenario 2 (asset price recession) the calculation is

ω2 ≈ log

(
Ai
RWR + εi(zL)(1− θ)zL +

∑I
j=i+1

1
R j−i

∑
z0+j−i π0(z0+j−i |zL)εi(z

(
z0+j−i))(1− θ)z

(
z0+j−i)

Ai
−1W−1 + εi(zH)(1− θ)zH +

∑I
j=i+1

1
R j−i

∑
z0+j−i π0(z0+j−i |zH)εi(z (z0+j−i))(1− θ)z (z0+j−i)

)

We can also translate the answers into dollar numbers, by computing ωLTI izH .

J The Economy with Housing

Residential real estate is the single most important component of household net worth. We

now extend our baseline model to allow households to invest in three assets: stocks, bonds, and

housing. The key finding will be that under a particular rescaling of parameter values, the welfare

consequences of recessions in the economies with and without housing are identical. In what

follows, the superscript H is used to differentiate parameter values from their counterparts in the
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original model without housing.

Preferences are given by

E

[
I∑

i=1

i∏
j=1

βH
j

x1−γH
i − 1

1− γH

]
,

where xi is a composite consumption bundle comprising nondurable consumption c and housing

services s, with respective shares υH and 1− υH :

xi = cυ
H

i s1−υH
i .

This Cobb-Douglas specification is consistent with extensive empirical evidence (see, for example,

Davis and Ortalo-Magne 2011). We assume that the aggregate supply of housing services is state

invariant and normalized to one. Housing is perfectly divisible, and there is a frictionless rental

market. Thus, agents can separate the decisions of how much housing to consume versus how

much housing to own for investment purposes. The technology for producing the nondurable good

c is exactly the same as in the baseline model, and this technology produces zH units of nondurable

output. Now corporate debt is a promise to deliver one unit of the composite good x in the next

period. The firm issues BH units of this debt each period. We then have the following proposition.

Proposition 2. If

(1− θ) = (1− θH)υH ,

B =

(
1 +

(1− υH)

υHθH

)
BH ,

{z} =
{(

zH
)υH}

,

{βi} =
{
βH
i

}
,

{εi} =
{
εHi
}

,

γ = γH ,

Γ = ΓH ,

then in the economy without housing, the life-cycle consumption profiles and the law of motion
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for wealth are identical, state by state, to their counterparts in the economy with housing:

ci(z , A, a) = xi(zH , A, a)

G (z , A, z ′) = GH(zH , A,
(
zH
)′

).

where GH denotes the law of motion for wealth shares in the model with housing. It follows

immediately that the welfare consequences of recessions in the two economies are identical for

each age, in each aggregate state.

The key to this result is that, in this model, rents comove perfectly with output, and house

prices comove perfectly with the value of nonhousing wealth. Let ph(z , A) denote the ex-rent price

of housing, and let rents and the price of non-durable consumption be denoted by r(z , A) and

pc(z , A). Then in the model with housing,

ph(z .A) =
(1− υH)

υHθH
[
p(z , A) + q(z , A)BH

]
r(z , A)

pc(z , A)
=

(1− υH)

υH
zH .

Thus, the housing asset offers the same returns as the market portfolio of corporate equity and

debt. It follows that introducing housing does not affect households’ ability to share risks across

generations. At the same time, given Cobb-Douglas preferences and the implied constant expen-

diture shares for nondurable consumption and housing, introducing housing does not change the

shapes of the life-cycle profiles for consumption or asset holdings.

Proof. In order to prove the previous result we begin by describing the decision problem in the

model with housing. In a series of steps, we will then show that this problem is isomorphic to the

decision problem in the model without housing.

Let yi(z , A, a) and λei (z , A, a), λhi (z , A, a) denote the optimal household policy functions for to-

tal savings and for the fraction of savings invested in equity and housing. Let ci(z , A, a), si(z , A, a),

and a′i(z , A, a, z ′) denote the policy functions for nondurable consumption, housing consumption,

and for shares of next period wealth. Let pc(z , A), ph(z , A), p(z , A), q(z , A), and r(z , A) denote,

respectively, the price of the nondurable consumption good, the price of housing, the price of

stocks, the price of bonds, and the rental rate for housing, all relative to the composite good x .
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The dynamic programming problem of the household reads as

vi(z , A, a) = max
c,y ,λe ,λh,a′

{
u (c , s) + βi+1

∑
z ′∈Z

Γz,z ′ vi+1 (z ′, A′, a′)

}
s.t. (A-29)

pc(z , A)c + y + r(z , A)s = εi(z)w(z) + W (z , A)a (A-30)

a′ =

(
λe [p(z ′,A′)+d(z ′)]

p(z,A)
+ λh

[ph(z ′,A′)+r(z ′,A′)]
ph(z,A)

+ (1− λe − λh) 1
q(z,A)

)
y

W (z ′, A′)
(A-31)

A′ = G (z , A, z ′). (A-32)

The aggregate value of start-of-period wealth in the model with housing is the value of aggregate

payments to asset holders in the period d(z) + r(z , A) + B , plus the ex-dividend value of equity

and housing p(z , A) + ph(z , A). Thus,

W (z ′, A′) = p(z ′, A′) + d(z ′) + ph(z ′, A′) + r(z ′, A′) + B .

A recursive competitive equilibrium can be defined as in the baseline model.

1. Result on Rents: The agent’s first-order condition with respect to the consumption of

housing services implies

si(z , A, Ai) =
(1− υ)

υr(z , A)
ci(z , A, Ai)pc(z , A). (A-33)

Summing across age-groups,

I∑
i=1

si(z , A, Ai) =
(1− υ)pc(z , A)

υr(z , A)

I∑
i=1

ci(z , A, Ai).

Imposing market clearing gives

r(z , A) =
(1− υ)

υ
pc(z , A)z . (A-34)
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Let e denote total expenditure in units of the composite good:

ei(z , A, Ai) = pc(z , A)ci(z , A, Ai) + r(z , A)si(z , A, Ai).

Substituting in A-33 gives

ei(z , A, Ai) =
1

υ
pc(z , A)ci(z , A, Ai). (A-35)

Define aggregate consumption/output as

X (z , A) =
∑
i

xi(z , A, Ai).

In equilibrium

xi(z , A, Ai) = ci(z , A, Ai)
υ

(
(1− υ)

υr(z , A)
ci(z , A, Ai)pc(z , A)

)1−υ

(A-36)

= ci(z , A, Ai)zυ−1.

so aggregate composite consumption (aggregate output) is

X (z , A) =
∑
i

xi(z , A, Ai)

= zυ−1
∑
i

ci(z , A, Ai)

= zυ.

Solve for pc(z , A) by setting the value of aggregate composite consumption equal to aggre-

gate expenditure (recall px(z , A) is normalized to one):

zυ =
∑
i

ei(z , A, Ai)

=
1

υ
pc(z , A)z .

Thus,

pc(z , A) = υzυ−1. (A-37)
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It follows that

r(z , A) =
(1− υ)

υ
zpc(z , A) = (1− υ)zυ.

2. Result on House Prices: Recall that the numeraire here is the composite consumption

good. Thus, dividends are given by

d(z , A) = pc(z , A)θz − B + q(z , A)B

= υθzυ − B + q(z , A)B .

where the second line follows from equation (A-37). Consider the following two assets: a

claim to aggregate capital income (unlevered equity) and housing. The respective returns to

the two assets are

p(z ′, A′) + d(z ′, A′) + B

pu(z , A)
=

pu(z ′, A′) + υθ (z ′)υ

pu(z , A)

ph(z ′, A′) + r(z ′, A′)

ph(z .A)
=

ph(z ′, A′) + (1− υ) (z ′)υ

ph(z .A)
.

Note that the income streams associated with these two assets are in fixed proportions. It

follows immediately that

ph(z .A) =
(1− υ)

υθ
pu(z , A).

3. Result on Portfolio Choice: Given that the return to housing is equal to the return

to unlevered equity, we can write the law of motion for individual wealth as

a′W (z ′, A′) =

(
λe

[p(z ′, A′) + d(z ′)]

p(z , A)
+ λh

[p(z ′, A′) + d(z ′) + B]

p(z , A) + q(z , A)B
+ (1− λe − λh)

1

q(z , A)

)
y

=

((
λe +

λhp(z , A)

p(z , A) + q(z , A)B

)
[p(z ′, A′) + d(z ′)]

p(z , A)
+

(
(1− λe − λh) +

λhq(z , A)B

p(z , A) + q(z , A)B

)
1

q(z , A)

)
y

=

(
λ̃

[p(z ′, A′) + d(z ′)]

p(z , A)
+
(

1− λ̃
) 1

q(z , A)

)
y ,
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where

λ̃ = λe +
λhp(z , A)

p(z , A) + q(z , A)B
.

Note that (i) there is no reference to house prices or rents in this law of motion, and (ii)

there is only one meaningful portfolio choice for agents, given that the return to housing is

a linear combination of the returns to equity debt.

4. Expression for Aggregate Wealth: Aggregate wealth can be written as

W (z , A) = p(z , A) + d(z) + ph(z , A) + r(z , A) + B

= p(z , A) + q(z , A)B + ph(z , A) + υθzυ + (1− υ)zυ

= p(z , A) + q(z , A)B +
(1− υ)

υθ
(p(z , A) + q(z , A)B) + (υθ + 1− υ) zυ.

Define

p̃(z , A) =

(
1 +

(1− υ)

υθ

)
p(z , A)

B̃ =

(
1 +

(1− υ)

υθ

)
B

d̃(z , A) =

(
1 +

(1− υ)

υθ

)
υθzυ − B̃ + q(z , A)B̃ .

In terms of this notation, aggregate wealth is given by

W (z , A) = p̃(z , A) + q(z , A)B̃ +

(
1 +

(1− υ)

υθ

)
υθzυ. (A-38)

5. Final Household Problem: We can now write the agent’s problem without any refer-

ence to housing as

vi(z , A, a) = max
c,y ,λ̃,a′

{
x1−γ

1− γ
+ βi+1

∑
z ′∈Z

Γz,z ′ vi+1 (z ′, A′, a′)

}

subject to

x + y = εi(z)(1− θ)υzυ + W (z , A)a (A-39)
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a′ =

(
λ̃

[p̃(z ′,A′)+(1+ (1−υ)
υθ )υθ(z ′)υ−B̃+q(z ′,A′)B̃]

p̃(z,A)
+
(

1− λ̃
)

1
q(z,A)

)
y

W (z ′, A′)
, (A-40)

taking as given laws of motion for z and A, and where W (z ′, A′) is given by A-38. It is

clear that this model is identical to the model without housing defined in the text, as long

as parameter values in the model without housing are the following functions of parameters

in the model with housing, where the latter are now denoted with superscript H :

1− θ = (1− θH)υH

z =
(
zH
)υ

B =

(
1 +

(1− υH)

υHθH

)
BH .
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