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Abstract

A method of implementation is introduced for collective decision problems when
only some statistics about the type space Ω are known: First, use those statistics
to whittle Ω down to a high probability event Ω∗. Then, design a mechanism M∗

to ex-post implement the desired outcome with Ω∗ as the type space. Viewed as
a mechanism over the true type space Ω, M∗ is typically not ex-post. However,
under a weaker solution concept I call ε-ex-post equilibrium, M∗ implements
the desired outcome in a high probability subevent of Ω∗. An application to
a dynamic allocation problem shows how implementation with statistics can
yield significantly better results than ex-post implementation.
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1 Introduction

In a typical collective decision problem involving a mechanism designer and a set of
agents, it is unlikely that the true probability measure governing the type space Ω will
be common knowledge, or even known to anyone. On the other hand, having common
knowledge of some basic statistics about Ω seems quite plausible. Such knowledge
could, for example, be extracted from data generated by previous related decision
problems or interactions with similar players.

In such a scenario, without a prior, Bayesian implementation is not feasible. De-
signing a mechanism that ex-post implements the desired outcome is an option, but
that would involve ignoring the known statistics about Ω, which, intuitively, could be
quite suboptimal: For example, suppose Ω is the set of positive reals, and it is known
that the expected value of the type is 1. This single statistic implies that there is a
less than 1% chance the realized type exceeds 100. Or, suppose it is known that the
type involves many independent draws from a distribution – a common situation in
dynamic decision problems. Then a Law of Large Numbers style argument implies
that the realized type is highly likely to lie in a tiny sliver of the type space.

In this paper, I present an approach to implementation, related to the ex-post
approach, that can incorporate those potentially important statistics: The mecha-
nism designer whittles the true type space Ω down to an event, Ω∗, that the common
knowledge statistics imply is of high probability. The mechanism designer then de-
signs a direct mechanism M∗ to ex-post implement the desired outcome treating Ω∗

as the type space. Compose M∗ with a retraction mapping [·] : Ω→ Ω∗ to get a direct
mechanism M∗ ◦ [·] over the true type space Ω, and call it a statistical mechanism.
The mechanism designer then uses such a statistical mechanism on the agents.

In what sense does using a statistical mechanism “work?” In the paper, I define
what it means for truth-telling to be an ε-ex-post equilibrium of a statistical mech-
anism. ε-ex-post equilibrium is a slight weakening of ex-post equilibrium. When
truth-telling is an ε-ex-post equilibrium, I argue that one can expect, with high prob-
ability, all agents to report the truth at all dates. I then show that, if it is known that
Ω∗ is of sufficiently high probability, then truth-telling is an ε-ex-post equilibrium of
M∗ ◦ [·], and, consequently, the mechanism designer can expect with high probability
that all agents report the truth at all dates when faced with M∗◦ [·]. Moreover, recall,
M∗ ex-post implements the desired outcome over Ω∗. Putting these two facts together
leads us to conclude that, if it is known that Ω∗ is of sufficiently high probability, then
M∗ ◦ [·] implements the desired outcome with high probability.

If the mechanism designer is comfortable with implementation on a high proba-
bility event of the type space rather than implementation over the entire type space,
then this statistical approach to implementation can yield significantly “better” solu-
tions to the collective decision problem than ex-post implementation. In particular, in
settings where there is a notion of cost, it can yield significantly cheaper mechanisms.

In the second half of the paper, I demonstrate this by comparing the two ap-
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proaches in the context of a repeated resource allocation problem. The setting is
quasilinear, agents have private values and are protected by limited liability, and the
mechanism designer can make nonnegative transfers to the agents in an effort to im-
plement the efficient allocation of resources each date. I show that when the number
of agents and dates goes to infinity, the cheapest efficient ex-post mechanism – which
is essentially just a sequence of VCG mechanisms – has an infinite cost-to-surplus ra-
tio. On the other hand, suppose agents are patient and some “Law of Large Numbers
style” statistics are known that still provide enough room for significant departures
from the baseline iid case. Then, in the limit, the mechanism designer can – via
a statistical mechanism I call the linked VCG mechanism – implement the efficient
allocation almost surely at a cost-to-surplus ratio of zero.

The concept of ε-ex-post equilibrium is related to notions of approximate strategy-
proofness recently developed by Lee (2017) and Azevedo and Budish (2019). Also
related are the contemporaneous perfect ε-equilibrium of Mailath, Postlewaite, and
Samuelson (2005) and the dynamic ex-post implementation concept of Bergemann
and Välimäki (2002). On the other hand, implementation with statistics is quite dis-
tinct from virtual implementation even though both methods involve the idea of im-
plementation with high probability. See, for example, Abreu and Matsushima (1992).
In virtual implementation, the high probability requirement is imposed at the ex-post
rather than ex-ante stage – that is, for each type profile, virtual implementation de-
mands that the mechanism implements the desired outcome with high probability.
Thus, it is best to view virtual implementation and implementation with statistics
as two orthogonal departures from ex-post implementation. In principle, one could
even combine the two methods of implementation (although this is not explored in
the current paper): First, generate an Ω∗ as in implementation with statistics, then
virtually implement the desired outcome with Ω∗ as the type space.

In the application to repeated resource allocation, my work on linking VCG mech-
anisms is related the work of Holmström (1979) on VCG mechanisms over restricted
preference domains. See also Green and Laffont (1977). In the many agents and
dates limit, the linked VCG mechanism that implements the efficient allocation al-
most surely at a cost-to-surplus ratio of zero resembles a budget mechanism. Thus,
my work reveals a surprising connection between VCG mechanisms and budget mech-
anisms. A number of papers have shown how budget mechanisms can align incentives
across multiple decision problems when transfers are unavailable. The linking mech-
anism of Jackson and Sonnenschein (2007) is one such budget mechanism (see, also,
Frankel 2014), and it is explicitly designed for repeated decision problems like the
resource allocation one considered here. The linking mechanism works in the large
numbers limit when the decision problems across dates are iid with known distri-
bution, implementing the efficient allocation almost surely for free. In contrast, the
linked VCG mechanism is not free, but, as I will show, it can be designed to work
about as cheaply as possible across a wide range of statistical settings, including those
that are far from the iid large numbers limit.
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2 Model

2.1 Decision Problems

Given integers N ≥ 2 and T ≥ 1, an N -agent T -date decision problem is a triple
(Ω, D, U). Ω = Π1≤n≤N, 1≤t≤TΩn

t is the type space, where each Ωn
t is a finite set of date

t types for agent n. D = ΠT
t=1Dt is a finite set of decision sequences. Un : D×Ωn → R

is agent n’s private values payoff function and is defined to be

Un(d, ωn) =
T∑
t=1

βt−1unt (d|t, ωn|t),

where β ∈ (0, 1] is the discount factor and unt : D|t × Ωn|t → R is agent n’s date t
utility function, which depends on the history of decisions, d|t, and agent n types,
ωn|t, up through date t.

A credal set is a nonempty set of probabilities, P , over Ω. It is common knowledge
that ω is governed by some true probability, call it P , lying in P . In a typical
application, the credal set will be an infinite set of probabilities that satisfy some
commonly known statistics. The only restriction I impose on credal sets is that they
consist only of private probabilities. A probability P̂ is private if P̂ (An×Ω−n| ω|t) =
P̂ n(An| ωn|t) for all n and An ⊂ Ωn. This restriction implies it is common knowledge
that, at each date t, the distribution of agent n’s future types is independent of other
agents’ type histories conditional on agent n’s type history.

Lastly, I assume it is common knowledge each agent n knows his own marginal,
P n, of the true probability.

2.2 Notation

For an object ·nt indexed by agents and dates, let the superscript denote the agent
index and the subscript denote the date index. Let ·n denote agent n’s sequence of ·nt
across all dates and let ·t denote the date t profile of ·nt across all agents. Let · denote
the array of ·nt across agents and dates. If an object ·n is only indexed by agents, then
let · denote the profile of ·n across agents. If an object ·t is only indexed by date, then
let · denote the sequence of ·t across all dates, and let ·|t denote the subsequence of ·
up through date t.

Let A and B be two sets of sequences. A map f : A → B is adapted is a|t =
a′|t ⇒ f(a)|t = f(a′)|t.

2.3 Statistical Mechanisms

Given subsets Ω∗n ⊂ Ωn for each agent n, define the event Ω∗ = Π1≤n≤NΩ∗n. A
retraction [·]n is an adapted map from Ωn to Ω∗n that is the identity on Ω∗n.
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Lemma 1. There exists a retraction from Ωn to Ω∗n.

A direct mechanism over Ω∗ is an adapted map M∗ : Ω∗ → D. An ex-post direct
mechanism over Ω∗ is an adapted map M∗ : Ω∗ → D satisfying

Un(M∗(ω−n, ωn), ωn) ≥ Un(M∗(ω−n, ω̂n), ωn) ∀n, ω−n ∈ Ω∗−n, ωn, ω̂n ∈ Ω∗n.

A statistical mechanism is an ex-post direct mechanism M∗ over some Ω∗ composed
with a retraction profile [·] : Ω→ Ω∗. It is a direct mechanism over Ω.

Given a direct mechanism over Ω, an agent n strategy, σn, consists of a sequence
of maps σnt : D|t−1 × Ωn|t → Ωn

t . Let Σn denote the set of all agent n strategies. A
profile of strategies, σ, can be viewed as an adapted map σ : Ω → Ω. Let id be the
strategy profile in which all agents report the truth at all dates.

2.4 ε-Ex-Post Equilibrium

For the rest of the paper, fix an ε > 0, to be interpreted as “small.” In this section, I
define what it means for id to be an ε-ex-post equilibrium of a statistical mechanism.

Fix a statistical mechanism, M∗ ◦ [·], corresponding to some Ω∗. For each agent
n, date t, and type history ωn|t define Rn

t (ωn|t) :=

max
ω̃∈Ω, ω̂n∈Ωn

s.t. ω̃n|t=ωn|t, ω̂n|t−1=ωn|t−1

T∑
s=t

βs−t
[
uns (M∗ ◦ [ω̂n, ω̃−n]|s, ω̃n|s)− uns (M∗ ◦ [ω̃]|s, ω̃n|s)

]
.

Rn
t (ωn|t) is agent n’s maximum regret standing at date t from continuing to play idn

assuming he has played idn up through date t− 1 and all other agents play id−n.

Definition. An agent n strategy σn is reasonable against id−n if, for all dates t,

P n(ωn /∈ Ω∗n | ωn|s) ·Rn
s (ωn|s) < ε ∀s ≤ t⇒ σnt (d|t−1, ω

n|t) = ωnt . (1)

Consider agent n deciding what to report at date 1 against id−n. Because of how
a statistical mechanism is constructed, he knows that reporting the truth starting
from today is ex-post optimal if ωn ∈ Ω∗n. If ωn /∈ Ω∗n, the maximum regret he will
experience from reporting the truth starting from today is Rn

1 (ωn|1). Thus, if the left
side of (1) is satisfied for t = 1, then it could be said that, from the perspective of
agent n at date 1, reporting the truth starting from today is within ε of being ex-post
optimal. In this case, I assume agent n reports the truth at date 1. The definition is
now justified by induction.

One thing worth commenting on about the left hand side of (1): When t > 1,
agent n observes a nontrivial decision history d|t−1, which is informative of other
agents’ type histories, ω−n|t−1. Since ω−n|t−1 can be informative of ωn, agent n
should, in principle, also condition on d|t−1 when formulating his conditional belief
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about ωn /∈ Ω∗n. This is problematic since, in general, agent n need not know P .
Fortunately, the fact that agent n knows P is a private probability and observes his
own type history implies that his conditional belief about ωn /∈ Ω∗n is independent
of the other agents’ type histories, and, therefore, d|t−1. Alternatively, we could just
assume that agent n is unable to infer anything from observing d|t−1, perhaps because
it is too mentally taxing to make inferences. In this case, we can drop the private
probabilities assumption about credal sets.

Let Σn(id−n) denote the set of all σn that are reasonable against id−n, and let
Σ(id) denote the set of all profiles of such σn.

Definition. id is an ε-ex-post equilibrium if it is common knowledge that every rea-
sonable strategy profile, σ, satisfies P−n(σ−n(ω−n) 6= ω−n) ≤ ε for all n.

ε-ex-post equilibrium generalizes ex-post equilibrium in the following sense: If id
is an ex-post equilibrium of a direct mechanism M then it is an ε-ex-post equilibrium
of M viewed as a statistical mechanism corresponding to Ω∗ = Ω. Indeed, suppose id
is an ex-post equilibrium of M . Viewing M as a statistical mechanism corresponding
to Ω∗ = Ω, we have Rn

t (ωn|t) = 0. The definition of reasonability now implies
Σ(id) = {id}. When Σ(id) = {id}, it is obviously common knowledge that every
reasonable strategy profile, σ, satisfies P−n(σ−n(ω−n) 6= ω−n) ≤ ε for all n. Therefore,
id is an ε-ex-post equilibrium.

It is also worth comparing the definition of ε-ex-post equilibrium with that of
perfect Bayesian equilibrium. In a perfect Bayesian equilibrium,

I. Each agent’s beliefs are “reasonable” given their own strategies and their con-
jectures about the other agents’ strategies (Bayes’ Rule).

II. Each agent’s strategies are “reasonable” given their beliefs and their conjectures
about the other agents’ strategies (sequential rationality).

III. Each agent correctly conjectures the other agents’ strategies.

In terms of ε-ex-post equilibrium, the relevant “beliefs” an agent must form are those
about the probability his type will land in Ω∗n. Since each agent knows his own
marginal, P n, these beliefs are {P n(ωn /∈ Ω∗n | ωn|t)}Tt=1 which, by definition, satisfy
Bayes’ Rule. The definition of what it means for σn to be reasonable corresponds
to the sequential rationality condition. Finally, the condition that it is common
knowledge that, in any reasonable strategy profile, the other agents’ strategies must be
ε-close to truth-telling corresponds to (a slight weakening of) the correct conjectures
condition.

When id is an ε-ex-post equilibrium of a statistical mechanism, I will interpret it
to mean that one can expect some reasonable strategy profile σ ∈ Σ(id) to be played.
In a typical application, the set, Σ(id), will not be known to anyone. Nevertheless,
one will still be able to deduce things just from the knowledge that the strategy profile
being played belongs in Σ(id). In particular, one knows that the probability all agents
will report the truth at all dates is at least 1− 2ε.
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2.5 Implementation with Statistics

Proposition 1. Let M∗◦[·] be a statistical mechanism corresponding to some Ω∗. Let
R ≥ ε be an upper bound of Rn

t (ωn|t) for all n, t, ωn|t. For any c ≤ ε, if it is common
knowledge that P n(ωn /∈ Ω∗n) ≤ c

N−1
· ε
R

for all agents n, then id is an ε-ex-post
equilibrium of M∗ ◦ [·].

A desired outcome is a correspondence DO : Ω → D where DO(ω) is the set of
decisions in which the mechanism designer wants the implemented decision to be.
For example, in an auction decision problem, a decision would be an allocation of
the object along with payments from the bidders, and, for a mechanism designer
who desires efficiency, DO(ω) could be the set of decisions that involve allocating the
object to the bidder with the highest valuation.

Let M∗ be an ex-post direct mechanism over Ω∗. We say M∗ ex-post implements
the desired outcome over Ω∗ if M∗(ω) ∈ DO(ω) for all ω ∈ Ω∗. Let M∗ ◦ [·] be a
statistical mechanism. We say M∗ ◦ [·] implements the desired outcome with prob-
ability at least p if id is an ε-ex-post equilibrium and it is common knowledge that
P (M∗ ◦ [σ(ω)] ∈ DO(ω)) ≥ p for all σ ∈ Σ(id).

We are now ready to state the central result of implementation with statistics:

Corollary 1. Suppose M∗ ex-post implements the desired outcome over some Ω∗.
Let c ≤ ε and R ≥ ε be an upper bound of Rn

t (ωn|t) for all n, t, ωn|t. If it is common
knowledge P n(ωn /∈ Ω∗n) ≤ c

N−1
· ε
R

for all agents n, then any corresponding statistical

mechanism implements the desired outcome with probability at least 1− Nc
N−1

.

3 Application: Repeated Resource Allocation

3.1 A Model of Repeated Resource Allocation

A principal (she) possesses a quantity q of a divisible, durable resource. She repeatedly
allocates this resource to a set of N ≥ 2 agents across T ≥ 1 dates.

At each date t, each agent n is endowed with ωnt ∈ [0,∞) units of a project type, f .
f is a strictly concave, C1 function f : [0,∞) → [0,∞) that maps resource quantity
to payoff. Assume f ′(0) <∞.

An allocation array a assigns agent n at date t an amount ant ≥ 0 of the resource,
subject to feasibility constraints,

∑N
n=1 a

n
t ≤ q for all t. A transfer profile w specifies

a profile of nonnegative payments from the principal to the agents at date T .
The principal desires to efficiently allocate her resource each date.
One application of this model is to an organization’s problem of designing an

internal talent marketplace. Instead of having a static collection of employee-job
matchings, many organizations are reimagining work as a flow of discrete tasks that
need to be assigned to available employees through some dynamic mechanism. See
Smet, Lund and Schaninger (2016).
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This problem can be viewed through the repeated resource allocation model: The
principal corresponds to the organization’s headquarters and the agents correspond
to various departments. Projects are departmental tasks. The stock of durable re-
sources is the organization’s pool of employees parameterized by hours of labor per
date, where a date could be, say, one month. Transfers from the principal to agents
correspond to incentive pay for department managers.

3.2 The Induced Decision Problem

The repeated resource allocation model defines an N -agent T -date decision problem:

• Ω = [0,∞)NT ,

• D = {(a, w) |
∑N

n=1 a
n
t ≤ q ∀t and wn ≥ 0 ∀n}, and

• Un((a, w), ω) = Un((an, wn), ωn) =
∑T

t=1 β
t−1ωnt f

(
ant
ωn
t

)
+ βT−1wn for all n.

In addition, define the following auxiliary quantities,

• agent n surplus: Sn((a, w), ω) = Sn(an, ωn) =
∑T

t=1 β
t−1ωnt f

(
ant
ωn
t

)
,

• total surplus: S((a, w), ω) = S(a, ω) =
∑N

n=1 S
n(an, ωn), and

• cost: C((a, w), ω) = C(w) =
∑
wn.

A direct mechanism can be expressed as a pair of adapted maps (A,W ) : Ω → D
consisting of an allocation map and a transfer map. The efficient allocation map is
the unique allocation map, A, satisfying

An
t (ω) =

ωnt∑N
m=1 ω

m
t

· q ∀ω ∈ Ω.

A direct mechanism (A,W ) is efficient if A ≡ A.
The principal’s desire to efficiently allocate her resource each date induces an

implementation problem where the desired outcome is DO(ω) = {(A(ω), w) | wn ≥
0 ∀n} for all ω ∈ Ω.

I now compare the ex-post and stylized approaches to implementation, with a
focus on which approach is cheaper for the principal.

3.3 The Unlinked VCG Mechanism

Suppose the principal wants to ex-post implement the efficient allocation. One option
is to run a separate Vickrey-Clark-Groves (VCG) mechanism each date, paying each
agent the sum of all other agents’ contributions to surplus:
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Definition. The unlinked VCG mechanism (A, V ) is the efficient direct mechanism
with transfer map defined as follows: For all ω ∈ Ω,

V n(ω) =
∑
m 6=n

T∑
t=1

βt−Tωmt f

(
Am
t (ω)

ωmt

)
.

Proposition 2. The unlinked VCG mechanism is the cheapest efficient ex-post direct
mechanism: Let (A,W ) be any efficient ex-post direct mechanism. Then for every
ω ∈ Ω, we have C(V (ω)) ≤ C(W (ω)).

Proposition 2 is a corollary of Proposition 3 below.
Even though the unlinked VCG mechanism is the cheapest mechanism that ex-

post implements the efficient allocation, it is still expensive with cost-to-surplus ratio

C(ω)

S(A(ω), ω)
= N − 1.

In particular, as the number of agents tends to infinity, so does the cost-to-surplus
ratio.

3.4 The Linked VCG Mechanism

Definition. Given Ω∗, the linked VCG mechanism (A|Ω∗ , V ∗) is the efficient direct
mechanism over Ω∗ with transfer map defined as follows: For all ω ∈ Ω∗,

V ∗n(ω) = V n(ω)− arg min
ω̂n∈Ω∗n

V n(ω−n, ω̂n).

The linked VCG mechanism (A|Ω∗ , V ∗) is obviously an efficient ex-post direct
mechanism over Ω∗. In fact,

Proposition 3. If Ω∗ is smoothly path-connected, then the linked VCG mechanism
(A|Ω∗ , V ∗) is the cheapest efficient ex-post direct mechanism over Ω∗.

Proposition 3 is a consequence of Theorem 1 of Hölmström (1979) about the
necessity of VCG mechanisms over restricted domains. The proof is a straightforward
application of the envelope theorem. Since the main theorem we are about to prove,
Theorem 1, does not rely on Proposition 3, its proof is omitted.

Proposition 1 implies that any statistical mechanism corresponding to (A|Ω∗ , V ∗)
implements the efficient allocation with high probability provided it is common knowl-
edge P n(Ω∗n) is sufficiently close to 1 for each agent n. As an abuse of nomenclature,
call any such statistical mechanism a linked VCG mechanism as well, and from now
on I will denote it by (Ω∗, V ∗).

I now show, as the number of agents and dates goes to infinity, assuming agents
are patient and P implies common knowledge of some “Law of Large Numbers style”
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statistics, then, by taking the statistical approach to implementation, the principal
can implement the efficient allocation almost surely at a cost-to-surplus ratio of zero.
This is in stark contrast to taking the ex-post approach, which would entail a cost-
to-surplus ratio of infinity.

3.5 A Family of Repeated Resource Allocation Models

Fix a quantity q > 0 of the resource and a project type f . Consider the family of
decision problems parameterized by N satisfying (q(N), f(N)) = (Nq, f), T (N) = N
and β(N) = 1. Refer to the member of the family with N -agents as the N -agent
decision problem. Throughout the analysis below, we may append (N) to a parameter
to emphasize that it is belongs to the N -agent decision problem.

Assume the family of credal sets {P(N)}N≥2 satisfies the following:

Assumption 1. There exist

• a bounded set of positive reals {ωavg} ∪ {ωavg,n}∞n=1,

• weakly decreasing functions g,G : [0,∞) → [0,∞) satisfying limz→∞ z
5g(z) =

limz→∞ z
3G(z) = 0,

• an increasing function I : (0,∞)→ (0,∞) satisfying limx→∞ I(x) =∞,

such that, for each N-agent decision problem, it is common knowledge that

P (N)

[∣∣∣∣
∑

s 6=t ω
n
s

N − 1
− ωavg,n

∣∣∣∣ > x

]
≤ g(I(x)(N − 1)) ∀x > 0, n, t ≤ N,

P (N)

[∣∣∣∣
∑

m 6=n ω
m
t

N − 1
− ωavg

∣∣∣∣ > x

]
≤ G(I(x)(N − 1)) ∀x > 0, t, n ≤ N.

If it is common knowledge that the array of endowments {ωnt }1≤n,t<∞ is iid with
mean µ and variance σ2, then the Central Limit Theorem implies Assumption 1 is
satisfied. However, the concentration inequalities of Bernstein and Hoeffding imply
that there is room for significant departures from the baseline iid case while still
satisfying Assumption 1. For example, suppose there exist positive values µ and
ω such that it is common knowledge that the array of endowments {ωnt }1≤n,t<∞ is
independent but not necessarily identically distributed, with mean µ and upper bound
ω. Then Hoeffding’s Inequality says that, for each N ,

P (N)

[∣∣∣∣
∑

s 6=t ω
n
s

N − 1
− µ

∣∣∣∣ > x

]
≤ 2 exp

(
−2(N − 1)x2

w2

)
,

P (N)

[∣∣∣∣
∑

m 6=n ω
m
t

N − 1
− µ

∣∣∣∣ > x

]
≤ 2 exp

(
−2(N − 1)x2

w2

)
,
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for all x > 0 and t, n ≤ N . By defining g(z) = G(z) = 2 exp(−z) and I(x) = 2x2

ω2 ,
we see that Hoeffding’s Inequality implies Assumption 1. In addition, it is clear that
Assumption 1 allows for the possibility of significant correlation between endowments
that differ in both the agent and time dimensions. This means many pairs of en-
dowments can be highly correlated. For example, let s2, s3 . . . be a sequence of iid
positive random variables with mean µ and variance σ2, and let ωnt = sn+t. Then
Assumption 1 is satisfied while any pair of endowments with the same sum of time
and agent indices are perfectly correlated.

Theorem 1. There exists a family, {(Ω∗(N), V ∗(N))}N≥2, of linked VCG mecha-
nisms, one for each N-agent decision problem, such that id is an ε-ex-post equilibrium
of each mechanism, and it is common knowledge that

lim
N→∞

inf
σ∈Σ(N)(id)

P (N) (ω ∈ Ω∗(N), σ(ω) = ω) = 1,

lim
N→∞

inf
σ∈Σ(N)(id)

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

EP (N)S(A(ω), ω)
= 1,

and

lim
N→∞

sup
σ∈Σ(N)(id)

EP (N)C(V ∗ ◦ [σ(ω)])

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)
= 0.

Theorem 1 says that in the limit it is possible to design a linked VCG mechanism
that will almost surely induce all agents to report the truth at all dates and allocate
resources efficiently, at an expected cost to expect surplus ratio of 0.

Let us gain some intuition for the result. When N is large, the efficient allocation
of resources to each date t project is

Nq∑N
m=1 ω

m
t

≈ q

ωavg
.

Thus, the efficient marginal productivity of resource is approximately always f ′ :=
f ′(q/ωavg). When N is large, we can whittle down each agent’s type space to be
approximately

Ω∗n(N) ≈

{
ωn
∣∣∣∣ ∑N

t=1 ω
n
t

N
= ωavg,n

}

while still ensuring that the probability that ω ∈ Ω∗(N) and σ(ω) = ω under any
reasonable σ is high. Fix such an ω. Let us now approximate agent n’s transfer under
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the linked VCG mechanism (Ω∗(N), V ∗(N)).

V ∗n(N)(ω) = V n(N)(ω)− arg min
ω̂n∈Ω∗n(N)

V n(N)(ω−n, ω̂n)

= arg max
ω̂n∈Ω∗n(N)

(V n(N)(ω−n, 0)− V n(N)(ω−n, ω̂n))

− (V n(N)(ω−n, 0)− V n(N)(ω))

≈ arg max
ω̂n∈Ω∗n(N)

(
N∑
t=1

ω̂nt

)
· q

ωavg
· f ′ −

(
N∑
t=1

ωnt

)
· q

ωavg
· f ′

≈ Nωavg,n · q

ωavg
· f ′ −

(
N∑
t=1

ωnt

)
· q

ωavg
· f ′ (2)

≈ 0 fraction of N.

Summing over all agents yields a cost that is approximately a zero fraction of N2.
Since expected surplus is on the order of N2, the expected cost to expected surplus
ratio is approximately zero.

As equation (2) in the derivation of agent n’s approximate transfer makes clear,
in the limit, the linked VCG mechanism resembles a budget mechanism where each
agent n is given a budget of Nωavg,n · q

ωavg · f ′ and the price of the resource is set
to f ′ each date. Each agent is then free to choose how much resources to buy each
date subject to his budget constraint. Each agent optimally purchases an amount
q

ωavg of the resource for each of his projects – which equates marginal product with
marginal cost. The assumption about each agent’s average endowment implies that
this purchasing strategy is approximately budget balanced.

Given the connection to budget mechanisms, it is natural to wonder how the linked
VCG mechanism compares with the linking mechanism of Jackson and Sonnenschein
(2007) (hereafter J-S), which is an explicit budget mechanism designed for repeated
decision problems like the one considered here. In the context of the repeated resource
allocation problem, the linking mechanism of J-S allows each agent n to report what-
ever endowment process he wants subject to the budget constraint that the empirical
distribution of endowments matches the probability distribution of endowments.

When there are many dates, and {ωnt } is independent across agents and dates,
and identically distributed with known distribution across dates holding the agent
fixed, the linking mechanism implements the efficient allocation almost surely for
free. In contrast, the best the linked VCG mechanism can do under these probabilistic
assumptions is to implement the efficient allocation almost surely at an expect cost
that is a vanishingly small fraction of expected surplus – and even this result requires
there to be many agents in addition to many dates.

However, the linked VCG mechanism does have some strengths. Our discussion
following Assumption 1 implies that Theorem 1 remains valid in settings that sig-
nificantly relax the probabilistic assumptions of J-S: Many pairs of endowments can
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be highly correlated; holding the agent fixed, endowments across dates can be far
from identically distributed; and the mechanism designer need not know any agent’s
endowment distribution.

Perhaps the biggest strength of the linked VCG mechanism is that it is not just
a single mechanism, designed to work perfectly in the large numbers limit. Given
any credal set, the mechanism designer can try her best to whittle Ω down to a suf-
ficiently high probability Ω∗ and create the corresponding linked VCG mechanism.
This linked VCG mechanism will implement the efficient allocation with high prob-
ability. Moreover, if Ω∗ is smoothly path-connected, then it is optimal treating Ω∗

as the type space. A reasonable interpretation of these facts is that the linked VCG
mechanism works well – if not perfectly – in a wide variety of statistical settings.

4 Appendix

Proof of Lemma 1. Let t(ωn) be the first date t for which there does not exist an
ω̂n ∈ Ω∗n such that ω̂n|t = ωn|t. t(ωn) is a stopping time. If ωn ∈ Ω∗n, then set
t(ωn) = T+1. For each ωn|t(ωn)−1, select a ω̂n ∈ Ω∗n such that ω̂n|t(ωn)−1 = ωn|t(ωn)−1.
Define [ωn] to be the ω̂n selected given ωn|t(ωn)−1. It is clearly the identity function
over Ω∗n.

To verify [·]n is adapted, let ω′n, ω′′n ∈ Ωn satisfy ω′n|t = ω′′n|t for some t. Since
t(ω) is a stopping time, it must be that either t ≥ t(ω′n) = t(ω′′n) or t < t(ω′n), t(ω′′n).
In the former case, [ω′n] = [ω′′n]. In the latter case, [ω′n]|t = ω′n|t = ω′′|t = [ω′′n]|t.

Proof of Proposition 1. Define Xn
t (ω) := P n(ωn /∈ Ω∗n | ωn|t). Extend the sequence

by one date by defining Xn
T+1 = Xn

T . It is common knowledge Xn is a nonnegative
martingale with expected value Xn

0 = P n(ωn /∈ Ω∗n) ≤ c
N−1
· ε
R

.
Let τn denote the stopping time when Xn

t first weakly exceeds ε
R

. If Xn
t never

weakly exceeds ε
R

, then set τn = T + 1. Let En ⊂ Ω denote the event τn ≤ T . By
Doob’s optional stopping theorem, we have

c

N − 1
· ε
R
≥ Xn

0 = EXn
τn = EXn

τn1τn≤T + EXn
τn1τn=T+1 ≥ EXn

τn1τn≤T .

Since EXn
τn1τn≤T ≥ ε

R
· P (En), it is common knowledge P (En) ≤ c

N−1
.

Fix an n and let ω /∈ ∪m 6=nEm. Then ∀t,m 6= n Pm(ωm /∈ Ω∗m | ωm|t) < ε
R
≤

ε
Rm

t (ωm|t) . Let σ ∈ Σ(id). Then, by definition, σ−n(ω−n) = ω−n. Thus, by de Morgan’s

Law, P (σ−n(ω−n) 6= ω−n) ≤ P (∪m6=nEm) ≤ c ≤ ε.

Proof of Corollary 1. Let ωn /∈ Ω∗n. The proof of Proposition 1 implies that Xn
T (ω) =

1 and ω ∈ En. Thus, ωn /∈ En ⇒ ω ∈ Ω∗n. Let σ ∈ Σ(id) and ω /∈ ∪nEn. Then
σ(ω) = ω and ω ∈ Ω∗. Thus, M∗ ◦ [σ(ω)] = M∗(ω) ∈ DO(ω). By de Morgan’s Law,
P (∪nEn) ≤ Nc

N−1
.
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4.1 Proof of Theorem 1

I specialize to the case where ωavg = ωavg,n for all n. The proof is easily adapted to
the general case.

4.1.1 Constructing the Linked VCG Mechanisms

Given N and any direct mechanism of the N -model, we can set R(N) := N2qf ′(0)∨ε.

Lemma 2. There exists a family of positive reals, {ε(N), x(N)}N≥2 such that

ε(N) ≤ ε ∀N,

Ng(I(x(N))N) ≤
ε(N)
N
ε

(N − 1)R(N)
∀N,

lim
N→∞

ε(N) = lim
N→∞

x(N) = 0.

Proof. Given integer k > 0, since limz→∞ z
5g(z) = 0, we have

lim
N→∞

(N − 1)N2R(N)g

(
I

(
1

k

)
N

)
= 0.

Thus, there exists an Nk such that for all N ≥ Nk,

(N − 1)N2R(N)g

(
I

(
1

k

)
N

)
<
ε

k
· ε.

Obviously, the sequence of Nk can be chosen to be strictly increasing.
Since limx→∞ I(x) =∞, there exists an x0 such that

N1g(I(x0)2) ≤
ε
N1
ε

(N1 − 1)R(N1)
.

For N < N1, define ε(N) = ε and x(N) = x0. For all integers k > 0, and
N ∈ {Nk, Nk + 1, . . . Nk+1 − 1}, define ε(N) = ε

k
and x(N) = 1

k
. The lemma is

proved.

Fix a family, {ε(N), x(N)}N≥2, as in Lemma 2, and define, for each N ,

Ω∗n(N) =

{
ωn ∈ Ωn(N)

∣∣∣∣∣
∣∣∣∣
∑

s 6=t ω
n
s

N − 1
− ωavg

∣∣∣∣ ≤ x(N) ∀t ≤ N

}

for all n ≤ N .
This yields a family of {Ω∗(N)}N≥2, and, consequently, a family of linked VCG

mechanisms {(Ω∗(N), V ∗(N))}N≥2.

13



Proposition 1 now implies that id is an ε-ex-post equilibrium in each of these
linked VCG mechanisms and it is common knowledge that

P (N) (ω ∈ Ω∗(N), σ(ω) = ω) > 1− ε(N)

N − 1
∀σ ∈ Σ(N)(id).

This proves the first part of Theorem 1.

4.1.2 Efficiency

Lemma 3. There exists a family of positive reals, {y(N)}N≥2 such that

lim
N→∞

(N − 1)N2G(I(y(N))N) = 0,

lim
N→∞

y(N) = 0.

Proof. The proof is similar to that of Lemma 2. For each integer k, there exists an
Nk such that for all N ≥ Nk,

(N − 1)N2G

(
I

(
1

k

)
N

)
≤ 1

k
.

Nk can be chosen to be strictly increasing in k. Fix an arbitrary y0 > 0. Then define
y(N) = y0 for all N < N1, and y(N) = 1

k
for all N ∈ {Nk, Nk + 1, . . . Nk+1 − 1}.

Fix a family, {y(N)}N≥2 as in Lemma 3, and define

Ω∗∗(N) =

{
ω

∣∣∣∣∣
∣∣∣∣
∑

m6=n ω
m
t

N − 1
− ωavg

∣∣∣∣ ≤ y(N) ∀t, n ≤ N, ω ∈ Ω∗(N), σ(ω) = ω

}

It is common knowledge that limN→∞ P (N)(Ω∗∗(N)) ≥ limN→∞ 1−N2G(I(y(N))N)−
ε(N)
N−1

= 1.

Lemma 4. The surpluses generated by {(Ω∗(N), V ∗(N))}N≥2 satisfy the following
bounds:

inf
ω∈Ω∗∗(N)

S(A(ω), ω) ≥ N2(ωavg − y(N))f

(
q

ωavg − y(N)

)
,

sup
ω∈Ω(N)

S(A(ω), ω) ≤ N2qf ′(0).

Proof. ω ∈ Ω∗∗(N) implies
∣∣∣∑m 6=n ω

m
t

N−1
− ωavg

∣∣∣ ≤ y(N) for all n, t ≤ N , which then

implies
∣∣∣∑n ω

n
t

N
− ωavg

∣∣∣ ≤ y(N) for all t ≤ N . Thus, the lowest possible surplus is

generated when
∑

n ω
n
t = N(ωavg − y(N)) for all t ≤ N . In this case, the surplus
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generated is N2(ωavg−y(N))f
(

q
ωavg−y(N)

)
. On the other hand, the surplus generated

is always weakly less than what is generated if ωnt =∞ for all n, t ≤ N . In this case,
the surplus generated is N2qf ′(0).

Since σ(ω) = ω for all σ ∈ Σ(N)(id) and whenever ω ∈ Ω∗∗, the second part of
Lemma 4 implies

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω) ≥ EP (N)S(A(ω), ω)− (1− P (Ω∗∗))N2qf ′(0).

And now, the first part of Lemma 4 implies

lim
N→∞

inf
σ∈Σ(N)(id)

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

EP (N)S(A(ω), ω)
≥

lim
N→∞

1− (1− P (N)(Ω∗∗(N)))qf ′(0)

P (N)(Ω∗∗(N))(ωavg − y(N))f
(

q
ωavg−y(N)

) = 1.

This proves the second part of Theorem 1.

4.1.3 Expected Cost

Lemma 5. Let ωn ∈ Ω∗n(N). Then ωnt ≤ ωavg + (2N − 1)x(N) for all t ≤ N .

Proof. ωn ∈ Ω∗n(N) implies
∣∣∣∑s 6=t ω

n
s

N−1
− ωavg

∣∣∣ ≤ x(N) for all t ≤ N , which then

implies
∣∣∣∑s ω

n
s

N
− ωavg

∣∣∣ ≤ x(N) or, equivalently,
∣∣∣∑s 6=t ω

n
s + ωnt −Nωavg

∣∣∣ ≤ Nx(N)

for all t ≤ N . Thus,

ωnt ≤ Nωavg −
∑
s 6=t

ωns +Nx(N) ≤ Nωavg − (N − 1)(ωavg − x(N)) +Nx(N)

= ωavg + (2N − 1)x(N).

Given ω ∈ Ω∗∗(N), and ω̂n ∈ Ω∗n(N), we have, by the concavity of f ,

V n(ω)− V n(ω−n, ω̂n) =
N∑
t=1

[∑
m 6=n

ωmt f

(
Nq

ωnt +
∑

m 6=n ω
m
t

)

−
∑
m6=n

ωmt f

(
Nq

ω̂nt +
∑

m 6=n ω
m
t

)]
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≤
N∑
t=1

[
f ′

(
Nq

ω̂nt +
∑

m6=n ω
m
t

)(∑
m6=n

ωmt

)

·

(
Nq

ωnt +
∑

m 6=n ω
m
t

− Nq

ω̂nt +
∑

m6=n ω
m
t

)]

=
N∑
t=1

[
f ′

(
Nq

ω̂nt +
∑

m6=n ω
m
t

)(∑
m6=n

ωmt

)

·

 (ω̂nt − ωnt )Nq(
ωnt +

∑
m6=n ω

m
t

)(
ω̂nt +

∑
m 6=n ω

m
t

)
 . (3)

This expression then implies

Lemma 6. Linked VCG transfers are asymptotically dominated by N over Ω∗∗(N).
Formally, there exists a family of positive reals {a(N), b(N)}N≥2 satisfying a(N) <

b(N) for all N , and limN→∞ a(N) = limN→∞ b(N) < ∞, such that for all agents
n ≤ N and ω ∈ Ω∗∗(N), we have

V ∗n(ω) ≤ N2x(N)a(N) +N(ωavg + x(N))(b(N)− a(N)).

Proof. Consider the quantity

f ′

(
Nq

ω̂nt +
∑

m6=n ω
m
t

)(∑
m 6=n

ωmt

)
·

 Nq(
ωnt +

∑
m6=n ω

m
t

)(
ω̂nt +

∑
m6=n ω

m
t

)
 . (4)

Given ω ∈ Ω∗∗(N), and ω̂n ∈ Ω∗n(N), let us bound from above and below this
quantity.

Lemma 5 and the fact that ω ∈ Ω∗∗(N) imply

f ′

(
Nq

ω̂nt +
∑

m6=n ω
m
t

)
∈

[
f ′

(
N
N−1

q

ωavg − y(N)

)
, f ′

(
N
N−1

q
ωavg

N−1
+ 2N−1

N−1
x(N) + ωavg + y(N)

)]
.

Similarly, (∑
m6=n

ωmt

)
·

 Nq(
ωnt +

∑
m 6=n ω

m
t

)(
ω̂nt +

∑
m 6=n ω

m
t

)
 ∈

[
(ωavg − y(N))q

(ωavg + y(N))
(
ωavg

N−1
+ 2N−1

N−1
x(N) + ωavg + y(N)

) , (ωavg + y(N))q

(ωavg − y(N))(ωavg − y(N))

]
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So, define

a(N) := f ′

(
N
N−1

q

ωavg − y(N)

)
· (ωavg − y(N))q

(ωavg + y(N))
(
ωavg

N−1
+ 2N−1

N−1
x(N) + ωavg + y(N)

) ,
b(N) := f ′

(
N
N−1

q
ωavg

N−1
+ 2N−1

N−1
x(N) + ωavg + y(N)

)
· (ωavg + y(N))q

(ωavg − y(N))(ωavg − y(N))
.

Clearly, a(N) < b(N) for all N . Moreover

lim
N→∞

a(N) = lim
N→∞

b(N) =
q

ωavg
f ′
( q

ωavg

)
.

And now, we can bound from above the right hand side of (3) by

N∑
t=1

(ω̂nt b(N)− ωnt a(N)) =

(
N∑
t=1

ω̂nt −
N∑
t=1

ωnt

)
a(N) +

N∑
t=1

ω̂nt (b(N)− a(N))

≤ N2x(N)a(N) +N(ωavg + x(N)) (b(N)− a(N)) .

The result now follows from the observation that

V ∗n(ω) = arg max
ω̂n∈Ω∗n

(
V n(ω)− V n(ω−n, ω̂n)

)
.

Applying Lemma 6, we have

EP (N)C(V ∗ ◦ [σ(ω)]) ≤ N22x(N)a(N) +N2(ωavg + x(N))(b(N)− a(N))

+

[
N2G(I(y(N))N) +

ε(N)

N − 1

]
(N − 1)N2qf ′(0).

Also,

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω) ≥ P (N)(Ω∗∗(N))N2(ωavg − y(N))f

(
q

ωavg − y(N)

)
.

Putting everything together and the third and final part of Theorem 1 is proved:

lim
N→∞

sup
σ∈Σ(N)(id)

EP (N)C(V ∗ ◦ [σ(ω)])

EP (N)S(A|Ω∗(N) ◦ [σ(ω)], ω)

≤ lim
N→∞

2x(N)a(N) + (ωavg + x(N))(b(N)− a(N)) + [(N − 1)N2G(I(y(N))N) + ε(N)] qf ′(0)

P (N)(Ω∗∗(N))(ωavg − y(N))f
(

q
ωavg−y(N)

)
= 0.
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